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Preface

We live in a complex world, and clever people are continually coming up with new ways

to observe and record increasingly large parts of it so we can comprehend it better (warts

and all!). We are squarely in the midst of a “big data” era, and it seems that every day new

methodologies and algorithms emerge that are designed to deal with the ever-increasing

size of these data streams.

It so happens that the “big data” available to us are often spatio-temporal data. That

is, they can be indexed by spatial locations and time stamps. The space might be geo-

graphic space, or socio-economic space, or more generally network space, and the time

scales might range from microseconds to millennia. Although scientists have long been

interested in spatio-temporal data (e.g., Kepler’s studies based on planetary observations

several centuries ago), it is only relatively recently that statisticians have taken a keen inter-

est in the topic. At the risk of two of us being found guilty of self-promotion, we believe

that the book Statistics for Spatio-Temporal Data by Cressie and Wikle (2011) was perhaps

the first dedicated and comprehensive statistical monograph on the topic. In the decade

(almost) since the publication of that book, there has been an exponential increase in the

number of papers dealing with spatio-temporal data analysis – not only in statistics, but also

in many other branches of science. Although Cressie and Wikle (2011) is still extremely

relevant, it was intended for a fairly advanced, technically trained audience, and it did not

include software or coding examples. In contrast, the present book provides a more access-

ible introduction, with hands-on applications of the methods through the use of R Labs at

the end of each chapter. At the time of writing, this unique aspect of the book fills a void in

the literature that can provide a bridge for students and researchers alike who wish to learn

the basics of spatio-temporal statistics.

What level is expected of readers of this book? First, although each chapter is fairly self-

contained and they can be read in any order, we ordered the book deliberately to “ease” the

reader into more technical material in later chapters. Spatio-temporal data can be complex,

and their representations in terms of mathematical and statistical models can be complex as

well. They require a number of indices (e.g., for space, for time, for multiple variables). In

addition, being able to account for dependent random processes requires a bit of statistical

sophistication that cannot be completely avoided, even in an applications-based introduct-

ory book. We believe that a reader who has taken a class or two in calculus-based prob-
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ability and inference, and who is comfortable with basic matrix-algebra representations of

statistical models (e.g., a multiple regression or a multivariate time-series representation),

could comfortably get through this book. For those who would like a brief refresher on

matrix algebra, we provide an overview of the components that we use in an appendix. To

make this a bit easier on readers with just a few statistics courses on their transcript, we

have interspersed “technical notes” throughout the book that provide short, gentle reviews

of methods and ideas from the broader statistical literature.

Chapter 1 is the place to start, to get you intrigued and perhaps even excited about

what is to come. We organized the rest of the book to follow what we believe to be good

statistical practice. First, look at your data and do exploratory analyses (Chapter 2), then

fit simple statistical models to the data to indicate possible patterns and see if assumptions

are violated (Chapter 3), and then use what you learned in these analyses to build a spatio-

temporal model that allows valid inferences (Chapters 4 and 5). The end of the cycle is

to evaluate your model formally to find areas of improvement and to help choose the best

model possible (Chapter 6). Then, if needed, repeat with a better-informed spatio-temporal

model.

The bulk of the material on spatio-temporal modeling appears in Chapters 4 and

5. Chapter 4 covers descriptive (marginal) models formed by characterizing the spatio-

temporal dependence structure (mainly through spatio-temporal covariances), which in turn

leads to models that are analogous to the ubiquitous geostatistical models used in kriging.

Chapter 5 focuses on dynamic (conditional) models that characterize the dynamic evolu-

tion of spatial processes through time, analogous to multivariate time-series models. Like

Cressie and Wikle (2011), both Chapters 4 and 5 are firmly rooted in the notion of hier-

archical thinking (i.e., hierarchical statistical modeling), which makes a clear distinction

between the data and the underlying latent process of interest. This is based on the very

practical notion that “[w]hat you see (data) is not always what you want to get (process)”

(Cressie and Wikle, 2011, p. xvi).

Spatio-temporal statistics is such a vast field and this modestly sized book is necessarily

not comprehensive. For example, we focus primarily on data whose spatial reference is a

point, and we do not explore issues related to the “change-of-support” problem, nor do

we deal with spatio-temporal point processes. Further, we mostly limit our discussion to

models and methodologies that are relatively mature, understood, and widely used. Some

of the applications our readers are confronted with will undoubtedly require cutting-edge

methods beyond the scope of this book. In that regard, the book provides a down-to-earth

introduction. We hope you find that the path is wide and the slope is gentle, ultimately

giving you the confidence to explore the literature for new developments. For this reason,

we have named our epilogical chapter Pergimus, Latin for “let us continue to progress.”

A substantial portion of this book is devoted to “Labs,” which enable the reader to

put his or her understanding into practice using the programming language R. There are

several reasons why we chose R: it is one of the most versatile languages designed for

statistics; it is open source; it enjoys a vibrant online community whose members post
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solutions to virtually any problem you will encounter when coding; and, most importantly,

a large number of packages that can be used for spatio-temporal modeling, exploratory data

analysis, and statistical inference (estimation, prediction, uncertainty quantification, and so

forth) are written in R. The last point is crucial, as it was our aim right from the beginning

to make use of as much tried-and-tested code as possible to reduce the analyst’s barrier

to entry. Indeed, it is fair to say that this book would not have been possible without the

excellent work, openness, and generosity of the R community as a whole.

In presenting the Labs, we intentionally use a “code-after-methodology” approach,

since we firmly believe that the reader should have an understanding of the statistical meth-

ods being used before delving into the computational details. To facilitate the connections

between methodology and computation, we have added “R Tips” where needed. The Labs

themselves assume some prior knowledge of R and, in particular, of the tidyverse, which

is built on an underlying philosophy of how to deal with data and graphics. Readers who

would like to know more can consult the excellent book by Wickham and Grolemund (2016)

for background reading (freely available online).

Finally, our goal when we started this project was to help as many people as we could to

start analyzing spatio-temporal data. Consequently, with the generous support of our editors

at Chapman & Hall/CRC, we have made the .pdf file of this book and the accompanying

R package, STRbook, freely available for download from the website listed below. In

addition, this website is a place where users can post errata, comment on the code examples,

post their own code for different problems, their own spatio-temporal data sets, and articles

on spatio-temporal statistics. You are invited to go to:

https://spacetimewithr.org

We hope you find this book useful for your endeavors as you begin to explore the com-

plexities of the spatio-temporal world around us – and within us! Let’s get started . . .

Christopher K. Wikle

Columbia, Missouri, USA

Andrew Zammit-Mangion

Wollongong, NSW, Australia

Noel Cressie

Sydney, NSW, Australia
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Chapter 1

Introduction to Spatio-Temporal

Statistics

“I feel all things as dynamic events, being, changing, and interacting with each

other in space and time even as I photograph them.” (Wynn Bullock, 1902–

1975, American photographer)

Wynn Bullock was an early pioneer of modern photography, and this quote captures the

essence of what we are trying to get across in our book – except in our case the “pho-

tographs” are fuzzy and the pictures are incomplete! The top panel of Figure 1.1 shows

the July 2014 launch of the US National Aeronautics and Space Administration (NASA)

Orbiting Carbon Observatory-2 (OCO-2) satellite, and the bottom panel shows the “pho-

tographer” in action. OCO-2 reached orbit successfully and, at the time of writing, is taking

pictures of the dynamic world below. They are taken every fraction of a second, and each

“photograph” is made up of measurements of the sun’s energy in selected spectral bands,

reflected from Earth’s surface.

After NASA processes these measurements, an estimate is obtained of the fraction of

carbon dioxide (CO2) molecules in an atmospheric column between Earth’s surface and the

OCO-2 satellite. The top panel of Figure 1.2 shows these estimates in the boreal winter at

locations determined by the geometry of the satellite’s 16-day repeat cycle (the time interval

after which the satellite retraces its orbital path). (They are color-coded according to their

value in units of parts per million, or ppm.) Plainly, there are gaps caused by OCO-2’s orbit

geometry, and notice that the higher northern latitudes have very few data (caused by the

sun’s low angle at that time of the year). The bottom panel of Figure 1.2 shows 16 days

of OCO-2 data obtained six months later, in the boreal summer, where the same comments

about coverage apply, except that now the higher southern latitudes have very few data.

Data incompleteness here is a moving target in both space and time. Furthermore, any

color-coded “dot” on the map represents a datum that should not be totally believed, since

1
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2 Introduction to Spatio-Temporal Statistics

Figure 1.1: Top: Launch of NASA’s OCO-2 satellite, on 02 July 2014 (credit: NASA/JPL).

Bottom: An artist’s impression of the OCO-2 satellite in orbit (credit: NASA/JPL).

it is an estimate obtained from measurements made through 700 km of atmosphere with

clouds, water vapor, and dust getting in the way. That is, there is “noise” in the data.

There is a “+” on the global maps shown in Figure 1.2, which is at the location of the

Mauna Loa volcano, Hawaii. Near the top of this volcano, at an altitude of 4.17 km, is the

US National Oceanic and Atmospheric Administration (NOAA) Mauna Loa Observatory

that has been taking monthly measurements of CO2 since the late 1950s. The data are

shown as a time series in Figure 1.3. Now, for the moment, put aside issues associated

with measurements being taken with different instruments, on different parcels of air, at
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Introduction to Spatio-Temporal Statistics 3

Figure 1.2: Sixteen days of CO2 data from the OCO-2 satellite. Top: Data from 25 Decem-

ber 2016 to 09 January 2017 (boreal winter). Bottom: Data from 24 June 2017 to 09 July

2017 (boreal summer). The panel titles identify the eighth day of the 16-day window.

different locations, and for different blocks of time; these can be dealt with using quite

advanced spatio-temporal statistical methodology found in, for example, Cressie and Wikle
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4 Introduction to Spatio-Temporal Statistics

(2011). What is fundamental here is that underlying these imperfect observations is a spatio-

temporal process that itself is not perfectly understood, and we propose to capture this

uncertainty in the process with a spatio-temporal statistical model.

Figure 1.3: Monthly mean atmospheric CO2 (ppm) at the NOAA Mauna Loa Observatory,

Hawaii. The smooth line represents seasonally corrected data (Credit: Scripps Institution

of Oceanography and NOAA Earth System Research Laboratory).

The atmospheric CO2 process varies in space and in time, but the extent of its spatio-

temporal domain means that exhaustive measurement of it is not possible; and even if it

were possible, it would not be a good use of resources (a conclusion you should find evident

after reading our book). Figure 1.2 shows two spatial views during short time periods that

are six months apart; that is, it gives two spatial “snapshots.” Figure 1.3 shows a temporal

view at one particular location as it varies monthly over a 50-year time period; that is, it

gives a temporal “profile.” This is a generic problem in spatio-temporal statistics, namely

our noisy data traverse different paths through the “space-time cube,” but we want to gain

knowledge about unobserved (and even observed) parts of it. We shall address this problem

in the chapters, the Labs, and the technical notes that follow, drawing on a number of data

sets introduced in Chapter 2.

Humans have a longing to understand their place (temporally and spatially) in the

universe. In an Einsteinian universe, space and time interact in a special, “curved” way;

however, in this book our methodology and applications are for a Newtonian world. Rick

Delmonico, author of the book, The Philosophy of Fractals (Delmonico, 2017), has been

quoted elsewhere as saying that “light is time at maximum compression and matter is space
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at maximum compression.” Our Newtonian world is definitely more relaxed than this! Nev-

ertheless, it is fascinating that images of electron motion at a scale of 10−11 meters look

very much like images of the cosmos at a scale of 1017 meters (Morrison and Morrison,

1982).

Trying to understand spatio-temporal data and how (and ultimately why) they vary in

space and time is not new – just consider trying to describe the growth and decline of

populations, the territorial expansion and contraction of empires, the spread of world re-

ligions, species (including human) migrations, the dynamics of epidemics, and so on. In-

deed, history and geography are inseparable. From this “big picture” point of view, there is

a complex system of interacting physical, biological, and social processes across a range of

spatial/temporal scales.

How does one do spatio-temporal statistics? Well, it is not enough to consider just

spatial snapshots of a process at a given time, nor just time-series profiles at a given spatial

location – the behavior at spatial locations at one time point will almost certainly affect the

behavior at nearby spatial locations at the next time point. Only by considering time and

space together can we address how spatially coherent entities change over time or, in some

cases, why they change. It turns out that a big part of the how and why of such change is

due to interactions across space and time, and across multiple processes.

For example, consider an influenza epidemic, which is generally in the winter season.

Individuals in the population at risk can be classified as susceptible (S), infected (I), or

recovered (R), and a well-known class of multivariate temporal models, called SIR models,

capture the transition of susceptibles to infecteds to recovereds and then possibly back to

susceptibles. At a micro level, infection occurs in the household, in the workplace, and in

public places due to the interaction (contact) between infected and susceptible individuals.

At a macro level, infection and recovery rates can be tracked and fitted to an SIR model that

might also account for the weather, demographics, and vaccination rates. Now suppose we

can disaggregate the total-population SIR rates into health-district SIR rates. This creates a

spatio-temporal data set, albeit at a coarse spatial scale, and the SIR rates can be visualized

dynamically on a map of the health districts. Spatio-temporal interactions may then become

apparent, and the first steps of spatio-temporal modeling can be taken.

Spatio-temporal interactions are not limited to similar types of processes nor to spatial

and temporal scales of variability that seem obvious. For example, El Niño and La Niña

phenomena in the tropical Pacific Ocean correspond to periods of warmer-than-normal and

colder-than-normal sea surface temperatures (SST), respectively. These SST “events” occur

every two to seven years, although the exact timing of their appearance and their end is not

regular. But it is well known that they have a tremendous impact on the weather across

the globe, and weather affects a great number of things! For example, the El Niño and La

Niña events can affect the temperature and rainfall over the midwest USA, which can affect,

say, the soil moisture in the state of Iowa, which would likely affect corn production and

could lead to a stressed USA agro-economy during that period. Simultaneously, these El

Niño and La Niña events can also affect the probability of tornado outbreaks in the famed
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6 Introduction to Spatio-Temporal Statistics

“tornado alley” region of the central USA, and they can even affect the breeding populations

of waterfowl in the USA.

Doing some clever smoothing and sharp visualizations of the spatial, temporal, and

spatio-temporal variability in the data is a great start. But the information we glean from

these data analyses needs to be organized, and this is done through models. In the next

section, we make the case for spatio-temporal models that are statistical.

1.1 Why Should Spatio-Temporal Models Be Statistical?

In the physical world, phenomena evolve in space and time following deterministic, perhaps

“chaotic,” physical rules (except at the quantum level), so why do we need to consider

randomness and uncertainty? The primary reason comes from the uncertainty resulting

from incomplete knowledge of the science and of the mechanisms driving a spatio-temporal

phenomenon. In particular, statistical spatio-temporal models give us the ability to model

components in a physical system that appear to be random and, even if they are not, the

models are useful if they result in accurate and precise predictions. Such models introduce

the notion of uncertainty, but they are able to do so without obscuring the salient trends or

regularities of the underlying process (that are typically of primary interest).

Take, for instance, the raindrops falling on a surface; to predict exactly where and when

each drop will fall would require an inconceivably complex, deterministic, meteorological

model, incorporating air pressure, wind speed, water-droplet formation, and so on. A model

of this sort at a large spatial scale is not only infeasible but also unnecessary for many

purposes. By studying the temporal intensity of drops on a regular spatial grid, one can

test for spatio-temporal interaction or look for dynamic changes in spatial intensity (given

in units of “per area”) for each cell of the grid. The way in which the intensity evolves

over time may reveal something about the driving mechanisms (e.g., wind vectors) and be

useful for prediction, even though the exact location and time of each incident raindrop is

uncertain.

Spatio-temporal statistical models are not at odds with deterministic ones. Indeed, the

most powerful (in terms of predictive performance) spatio-temporal statistical models are

those that are constructed based on an understanding of the biological or physical mecha-

nisms that give rise to spatio-temporal variability and interactions. Hence, we sometimes

refer to them as physical-statistical models (see the editorial by Kuhnert, 2014), or gen-

erally as mechanistically motivated statistical models. To this understanding, we add the

reality that observations may have large gaps between them (in space and in time), they

are observed with error, our understanding of the physical mechanisms is incomplete, we

have limited knowledge about model parameters, and so on. Then it becomes clear that

incorporating statistical distributions into the model is a very natural way to solve complex

problems. Answers to the problems come as estimates or predictions along with a quan-

tification of their uncertainties. These physical-statistical models, in the temporal domain,
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the spatial domain, and the spatio-temporal domain, have immense use in everything from

anthropology to zoology and all the “ologies” in-between.

1.2 Goals of Spatio-Temporal Statistics

What are we trying to accomplish with spatio-temporal data analysis and statistical mod-

eling? Sometimes we are just trying to gain more understanding of our data. We might

be interested in looking for relationships between two spatio-temporally varying processes,

such as temperature and rainfall. This can be as simple as visualizing the data or explor-

ing them through various summaries (Chapter 2). Augmenting these data with scientific

theories and statistical methodologies allows valid inferences to be made (Chapter 3). For

example, successive reports from the United Nations Intergovernmental Panel on Climate

Change have concluded from theory and data that a build-up of atmospheric CO2 leads to a

greenhouse effect that results in global warming. Models can then be built to answer more

focused questions. For example, the CO2 data shown in Figure 1.2 are a manifestation of

Earth’s carbon cycle: can we find precisely the spatio-temporal “places” on Earth’s surface

where carbon moves in and out of the atmosphere? Or, how might this warming affect our

ability to predict whether an El Niño event will occur within 6 months?

Broadly speaking, there are three main goals that one might pursue with a spatio-

temporal statistical model: (1) prediction in space and time (filtering and smoothing); (2)

inference on parameters; and (3) forecasting in time. More specific goals might include

data assimilation, computer-model emulation, and design of spatio-temporal monitoring

networks. These are all related through the presence of a spatio-temporal statistical model,

but they have their own nuances and may require different methodologies (Chapters 4 and

5).

1.2.1 The Two Ds of Spatio-Temporal Statistical Modeling

There have been two approaches to spatio-temporal statistical modeling that address the

goals listed above. These are the “two Ds” referred to in the title of this subsection, namely

the descriptive approach and the dynamic approach. Both are trying to capture statistical

dependencies in spatio-temporal phenomena, but they go about it in quite different ways.

Probably the simplest example of this is in time-series modeling. Suppose that the

dependence between any two data at different time points is modeled with a stationary first-

order autoregressive process (AR(1)). Dynamically, the model says that the value at the

current time is equal to a “propagation factor” (or “transition factor”) times the value at

the previous time, plus an independent “innovation error.” This is a mechanistic way of

presenting the model that is easy to simulate and easy to interpret.

Descriptively, the same probability structure can be obtained by defining the correlation

between two values at any two given time points to be an exponentially decreasing function
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8 Introduction to Spatio-Temporal Statistics

of the lag between the two time points. (The rate of decrease depends on the AR(1) propa-

gation factor.) Viewing the model this way, it is not immediately obvious how to simulate

from it nor what the behavior of the correlation function means physically.

The “take-home” message here is that, while there is a single underlying probability

model common to the two specifications, the dynamic approach has some attractive inter-

pretable features that the descriptive approach does not have. Nevertheless, in the absence of

knowledge of the dynamics, it can be the descriptive approach that is more “fit for purpose.”

With mean and covariance functions that are sufficiently flexible, a good fit to the data can

be obtained and, consequently, the spatio-temporal variability can be well described.

1.2.2 Descriptive Modeling

The descriptive approach typically seeks to characterize the spatio-temporal process in

terms of its mean function and its covariance function. When these are sufficient to de-

scribe the process, we can use “optimal prediction” theory to obtain predictions and, cru-

cially, their associated prediction uncertainties. This approach has a distinguished history

in spatial statistics and is the foundation of the famed kriging methodology. (Cressie, 1990,

presents the early history of kriging.) In a spatio-temporal setting, the descriptive approach

is most useful when we do not have a strong understanding of the mechanisms that drive the

spatio-temporal phenomenon being modeled. Or perhaps we are more interested in study-

ing how covariates in a regression are influencing the phenomenon, but we also recognize

that the errors that occur when fitting that relationship are statistically dependent in space

and time. That is, the standard assumption given in Chapter 3, that errors are independent

and identically distributed (iid), is not tenable. In this case, knowing spatio-temporal co-

variances between the data is enough for statistically efficient inferences (via generalized

least squares) on regression coefficients (see Chapter 4). But, as you might suspect, it can be

quite difficult to specify all possible covariances for complex spatio-temporal phenomena

(and, for nonlinear processes, covariances are not sufficient to describe the spatio-temporal

statistical dependence within the process).

Sometimes we can describe spatio-temporal dependence in a phenomenon by includ-

ing in our model covariates that capture spatio-temporal “trends.” This large-scale spatio-

temporal variability leaves behind smaller-scale variability that can be modeled statistically

with spatio-temporal covariances. The descriptive approach often relies on an important

statistical characteristic of dependent data, namely that nearby (in space and time) obser-

vations tend to be more alike than those far apart. In spatial modeling, this is often re-

ferred to as “Tobler’s first law of geography” (Tobler, 1970), and it is often a good guiding

principle. It is fair to point out, though, that there are exceptions: there might be “com-

petition” (e.g., only smaller trees are likely to grow close to or under bigger trees as they

compete over time for light and nutrients), or things may be more alike on two distant

mountain peaks at the same elevation than they are on the same mountain peak at different

elevations.
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It is important to take a look back at the writings of the pioneers in statistics and ask why

spatio-temporal statistical dependencies were not present in early statistical models if they

are so ubiquitous in real-world data. Well, we know that some people definitely were aware

of these issues. For example, in his ground-breaking treatise on the design of experiments

in agriculture, R. A. Fisher (1935, p. 66) wrote: “After choosing the area we usually have

no guidance beyond the widely verified fact that patches in close proximity are commonly

more alike, as judged by the yield of crops, than those which are further apart.” In this

case, the spatial variability between plots is primarily due to the fact that the soil properties

vary relatively smoothly across space at the field level. Unfortunately, Fisher could not im-

plement complex error models that included spatial statistical dependence due to modeling

and computational limitations at that time. So he came up with the brilliant solution of

introducing randomization into the experimental design in order to avoid confounding plot

effects and treatment effects (but note, only at the plot scale). This was one of the most

important innovations in twentieth-century science, and it revolutionized experimentation,

not only in agriculture but also in industrial and medical applications. Readers interested in

more details behind the development of spatial and spatio-temporal statistics could consult

Chapter 1 of Cressie (1993) and Chapter 1 of Cressie and Wikle (2011), respectively.

1.2.3 Dynamic Modeling

Dynamic modeling in the context of spatio-temporal data is simply the notion that we build

statistical models that posit (either probabilistically or mechanistically) how a spatial pro-

cess changes through time. It is inherently a conditional approach, in that we condition on

knowing the past, and then we model how the past statistically evolves into the present. If

the spatio-temporal phenomenon is what we call “stationary,” we could take what we know

about it in the present (and the past) and forecast what it will look like in the future.

Building spatio-temporal models using the dynamic approach is closer to how scien-

tists think about the etiology of processes they study – that is, most spatio-temporal data

really do correspond to a mechanistic real-world process that can be thought of as a spatial

process evolving through time. This connection to the mechanism of the process allows

spatio-temporal dynamic models a better chance to establish answers to the “why” ques-

tions (causality) – is this not the ultimate goal of science? Yet, there is no free lunch –

the power of these models comes from established knowledge about the process’s behavior,

which may not be available for the problem at hand. In that case, one might specify more

flexible classes of dynamic models that can adapt to various types of evolution, or turn to

the descriptive approach and fit flexible mean and covariance functions to the data.

From a statistical perspective, dynamic models are closer to the kinds of statistical mod-

els studied in time series than to those studied in spatial statistics. Yet, there are two fun-

damental differences between spatio-temporal statistical models that are dynamic, and the

usual multivariate time-series models. The first is that dynamic spatio-temporal models

have to represent realistically the kinds of spatio-temporal interactions that take place in
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10 Introduction to Spatio-Temporal Statistics

the phenomenon being studied – not all relationships that one might put into a multivariate

time-series model make physical (or biological or economic or . . . ) sense. The second rea-

son has to do with dimensionality. It is very often the case in spatio-temporal applications

that the dimensionality of the spatial component of the model prohibits standard inferential

methods. That is, there would be too much “multi” if one chose a multivariate time-series

representation of the phenomenon. Special care has to be taken as to how the model is pa-

rameterized in order to obtain realistic yet parsimonious dynamics. As discussed in Chapter

5, this has been facilitated to a large extent by the development of basis function expansions

within hierarchical statistical models.

Irrespective of which “D” is used to model a spatio-temporal data set, its sheer size

can overwhelm computations. Model formulations that use basis functions are a powerful

way to leap-frog the computational bottleneck caused by inverting a very large covariance

matrix of the data. The general idea is to represent a spatio-temporal process as a mixed

linear model with known covariates whose coefficients are unknown and non-random, to-

gether with known basis functions whose coefficients are unknown and random (Chapters

4 and 5). Usually the basis functions are functions of space and their coefficients define

a multivariate time series of dependent random vectors. Depending on the type of basis

functions considered, this formulation gives computational advantages due to reduced di-

mensions and/or sparse covariance/precision matrices that facilitate or eliminate the need

for matrix inversions.

There are many classes of basis functions to choose from (e.g., Fourier, wavelets,

bisquares) and many are multi-resolutional, although physically based functions (e.g., ele-

vation) can easily be added to the class. If the basis functions are spatial and their random

coefficients depend only on time, then the temporal dependence of the coefficients can cap-

ture complex spatio-temporal interactions. These include phenomena for which fine spatial

scales affect coarse spatial scales and, importantly, vice versa.

1.3 Hierarchical Statistical Models

We believe that we are seeing the end of the era of constructing marginal-probability-based

models for complex data. Such models are typically based on the specification of likeli-

hoods from which unknown parameters are estimated. However, these likelihoods can be

extremely difficult (or impossible) to compute when there are complex dependencies, and

they cannot easily deal with the reality that the data are noisy versions of an underlying

real-world process that we care about.

An alternative way to introduce statistical uncertainty into a model is to think condition-

ally and build complexity through a series of conditional-probability models. For example,

if most of the complex dependencies in the data are due to the underlying process of in-

terest, then one should model the distribution of the data conditioned on that process (data

model), followed by a model of the process’ behavior and its uncertainties (process model).
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Hierarchical Statistical Models 11

There will typically be unknown parameters present, in both the statistical model for the

data (conditioned on the process) and the statistical model for the process.

When a dynamic model of one or several variables is placed within a hierarchical model

formulation (see below), one obtains what has been historically called a state-space model

in the time-series literature. That is, one has data that are collected sequentially in time

(i.e., a time series), and they are modeled as “noisy” observations of an underlying state

process evolving (statistically) through time. These models are at the core of a number

of engineering applications (e.g., space missions), and the challenge is to find efficient

approaches to perform inference on the underlying state process of interest while accounting

for the noise.

In general, there are three such situations of interest when considering state-space mod-

els: smoothing, filtering, and forecasting. Smoothing refers to inference on the hidden state

process during a fixed time period in which we have observations throughout the time pe-

riod. (The reader might note that this is the temporal analog of spatial prediction on a

bounded spatial domain.) Now consider a time period that always includes the most current

time, at which the latest observation is available. Filtering refers to inference on the hidden

state value at the most current time based on the current and all past data. The most famous

example of filtering in this setting is a methodology known widely as the Kalman filter

(Kalman, 1960). Finally, forecasting refers to inference on the hidden state value at any

time point beyond the current time, where data are either not available or not considered in

the forecast. In this book, instead of modeling the evolution of a single variable or several

variables, we model entire spatial processes evolving through time, which often adds an

extra layer of modeling complexity and computational difficulty. Chapter 5 discusses how

basis-function representations can deal with these difficulties.

In addition to uncertainty associated with the data and the underlying spatio-temporal

process, there might be uncertainties in the parameters. These uncertainties could be ac-

counted for statistically by putting a prior distribution on the parameters. To make sense

of all this, we use hierarchical (statistical) models (HMs), and follow the terminology of

Berliner (1996), who defined an HM to include a data model, a process model, and a pa-

rameter model. Technical Note 1.1 gives the conditional-probability structure that ties these

models together into a coherent joint probability model of all the uncertainties. The key to

the Berliner HM framework is that, at any level of a spatio-temporal HM, it is a good

strategy to put as much of the dependence structure as possible in the conditional-mean

specification in order to simplify the conditional-covariance specification.

When the parameters are given prior distributions (i.e., a parameter model is posited)

at the bottom level of the hierarchy, then we say that the model is a Bayesian hierarchical

model (BHM). A BHM is often necessary for complex-modeling situations, because the

parameters themselves may exhibit quite complex (e.g., spatial or temporal) structure. Or

they may depend on other covariates and hence could be considered as processes in their

own right. In simpler models, an alternative approach is to estimate the parameters present

in the top two levels in some way using the data or other sources of data; then we like to say
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12 Introduction to Spatio-Temporal Statistics

that the hierarchical model is an empirical hierarchical model (EHM). When applicable, an

EHM may be preferred if the modeler is reluctant to put prior distributions on parameters

about which little is known, or if computational efficiencies can be gained.

It is clear that the BHM approach allows very complex processes to be modeled by

going deeper and deeper in the hierarchy, but at each level the conditional-probability model

can be quite simple. Machine learning uses a similar approach with its deep models. A

cascade of levels, where the processing of output from the previous level is relatively simple,

results in a class of machine-learning algorithms known as deep learning. A potential

advantage of the BHM approach over deep learning is that it provides a unified probabilistic

framework that allows one to account for uncertainty in data, model, and parameters.

A very important advantage of the data–process–parameter modeling paradigm in

an HM is that, while marginal-dependence structures are difficult to model directly,

conditional-dependence structures usually come naturally. For example, it is often rea-

sonable to assume that the data covariance matrix (given the corresponding values of the

hidden process) is simply a diagonal matrix of measurement-error variances. This frees

up the process covariance matrix to capture the “pure” spatio-temporal dependence, ide-

ally (but, not necessarily) from physical or mechanistic knowledge. Armed with these two

covariance matrices, the seemingly complex marginal covariance matrix of the data can

be simply obtained. This same idea is used in mixed-effects modeling (e.g., in longitudi-

nal data analysis), and it is apparent in the spatio-temporal statistical models described in

Chapters 4 and 5.

The product of the conditional-probability components of the HM gives the joint prob-

ability model for all random quantities (i.e., all “unknowns”). The HM could be either a

BHM or an EHM, depending on whether, respectively, a prior distribution is put on the

parameters (i.e., a parameter model is posited) or the parameters are estimated. (A hybrid

situation arises when some but not all parameters are estimated and the remaining have a

prior distribution put on them.) In this book, we are primarily interested in obtaining the

(finite-dimensional) distribution of the hidden (discretized) spatio-temporal process given

the data, which we call the predictive distribution. The BHM also allows one to obtain

the posterior distribution of the parameters given the data, whereas the EHM requires an

estimate of the parameters. Predictive and posterior distributions are obtained using Bayes’

Rule (Technical Note 1.1).

Since predictive and posterior distributions must have total probability mass equal to 1,

there is a critical normalizing constant to worry about. Generally, it cannot be calculated

in closed form, in which case we rely on computational methods to deal with it. Important

advances in the last 30 years have alleviated this problem by making use of Monte Carlo

samplers from a Markov chain whose stationary distribution is the predictive (or the pos-

terior) distribution of interest. These Markov chain Monte Carlo (MCMC) methods have

revolutionized the use of HMs for complex modeling applications, such as those found in

spatio-temporal statistics.
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Technical Note 1.1: Berliner’s Bayesian Hierarchical Model (BHM) paradigm

First, the fundamental notion of the law of total probability allows one

to decompose a joint distribution into a series of conditional distributions:

[A,B,C] = [A | B,C][B | C][C], where the “bracket notation” is used to denote prob-

ability distributions; for example, [A,B,C] is the joint distribution of random variables

A, B, and C, and [A | B,C] is the conditional distribution of A given B and C.

Mark Berliner’s insight (Berliner, 1996) was that one should use this simple decomposi-

tion as a way to formulate models for complex dependent processes. That is, the joint

distribution, [data, process, parameters], can be factored into three levels.

At the top level is the data model, which is a probability model that specifies the distri-

bution of the data given an underlying “true” process (sometimes called the hidden or

latent process) and given some parameters that are needed to specify this distribution.

At the next level is the process model, which is a probability model that describes the

hidden process (and, thus, its uncertainty) given some parameters. Note that at this level

the model does not need to account for measurement uncertainty. The process model

can then use science-based theoretical or empirical knowledge, which is often physical

or mechanistic. At the bottom level is the parameter model, where uncertainty about the

parameters is modeled. From top to bottom, the levels of a BHM are:

1. Data model: [data | process, parameters]

2. Process model: [process | parameters]

3. Parameter model: [parameters]

Importantly, each of these levels could have sub-levels, for which conditional-probability

models could be given.

Ultimately, we are interested in the posterior distribution, [process, parameters | data]

which, conveniently, is proportional to the product of the levels of the BHM given above:

[process, parameters | data] ∝ [data | process, parameters]

× [process | parameters]

× [parameters],

where “∝” means “is proportional to.” (Dividing the right-hand side by the normaliz-

ing constant, [data], makes it equal to the left-hand side.) Note that this result comes

from application of Bayes’ Rule, applied to the hierarchical model. Inference based on

complex models typically requires numerical evaluation of the posterior (e.g., MCMC

methods), because the normalizing constant cannot generally be calculated in closed

form.
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14 Introduction to Spatio-Temporal Statistics

An empirical hierarchical model (EHM) uses just the first two levels, from which the

predictive distribution is

[process | data, parameters] ∝ [data | process, parameters]

× [process | parameters],

where parameter estimates are substituted in for “parameters.” Numerical evaluation of

this (empirical) predictive distribution is also typically needed, since the EHM’s normal-

izing constant cannot generally be calculated in closed form.

1.4 Structure of the Book

The remaining chapters in this book are arranged in the way that we often approach statist-

ical modeling in general and spatio-temporal modeling in particular. That is, we begin by

exploring our data. So, Chapter 2 gives ways to do this through visualization and through

various summaries of the data. We note that both of these types of exploration can be

tricky with spatio-temporal data, because we have one or more dimensions in space and

one in time. It can be difficult to visualize information in more than two dimensions, so it

often helps to slice through or aggregate over a dimension, or use color, or build animations

through time. Similarly, when looking at numerical summaries of the data, we have to

come up with innovative ways to help reduce the inherent dimensionality and to examine

dependence structures and potential relationships in time and space.

After having explored our data, it is often the case that we would like to fit some fairly

simple models – sometimes to help us do an initial filling-in of missing observations that

will assist with further exploration, or sometimes just to see if we have enough covariates to

adequately explain the important dependencies in the data. This is the spirit of Chapter 3,

which presents some ways to do spatial prediction that are not based on a statistical model or

are based on very basic statistical models that do not explicitly account for spatio-temporal

structure (e.g., linear regression, generalized linear models, and generalized additive mod-

els).

If the standard models presented in Chapter 3 are not sufficient to accomplish the goals

we gave in Section 1.2, what are we to do? This is when we start to consider the descriptive

and dynamic approaches to spatio-temporal modeling discussed above. The descriptive

approach has been the “workhorse” of spatio-temporal statistical modeling for most of the

history of the discipline, and these methods (e.g., kriging) are described in Chapter 4. But,

as mentioned above, when we have strong mechanistic knowledge about the underlying

process and/or are interested in complex prediction or forecasting scenarios, we often bene-
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fit from the dynamic approach described in Chapter 5. Take note that Chapters 4 and 5

will require a bit more patience to go through, because process models that incorporate

statistical dependence require more mathematical machinery. Hence, in these two chapters,

the notation and motivation will be somewhat more technical than for the models presented

in Chapter 3. It should be kept in mind, though, that the aim here is not to make you an

expert, rather it is to introduce you (via the text, the Labs, and the technical notes) to the

motivations, main concepts, and practicalities behind spatio-temporal statistical modeling.

After building a model, we would like to know how good it is. There are probably

as many ways to evaluate models as there are models! So, it is safe to say that there is

no standard way to evaluate a spatio-temporal statistical model. However, there are some

common approaches that have been used in the past to carry out model evaluation and model

comparison, some of which apply to spatio-temporal models (see Chapter 6). We note that

the aim there is not to show you how to obtain the “best” model (as there isn’t one!). Rather,

it is to show you how a model or a set of models can be found that does a reasonable job

with regard to the goals outlined in Section 1.2.

Last, but certainly not least, each of Chapters 2–6 contain Lab vignettes that go through

the implementation of many of the important methods presented in each chapter using the

R programming language. This book represents the first time such a comprehensive collec-

tion of R examples for spatio-temporal data have been collected in one place. We believe

that it is essential to “get your hands dirty” with data, but we recognize that quite a few

of the methods and approaches used in spatio-temporal statistics can be complicated and

that it can be daunting to program them yourself from scratch. Therefore, we have tried to

identify some useful (and stable) R functions from existing R packages (see the list follow-

ing the appendices) that can be used to implement the methods discussed in Chapters 2–6.

We have also put a few functions of our own, along with the data sets that we have used, in

the R package, STRbook, associated with this book (instructions for obtaining this package

are available at https://spacetimewithr.org). We note that there are many other

R packages that implement various spatio-temporal methods, whose approaches could ar-

rive at the same result with more or less effort, depending on familiarity. As is often the

case with R, one gets used to doing things a certain way, and so most of our choices are

representative of this.
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Chapter 2

Exploring Spatio-Temporal Data

Exploration into territory unknown, or little known, requires both curiosity and survival

skills. You need to know where you are, what you are looking at, and how it relates to what

you have seen already. The aim of this chapter is to teach you those skills for exploring

spatio-temporal data sets. The curiosity will come from you!

Spatio-temporal data are everywhere in science, engineering, business, and industry.

This is driven to a large extent by various automated data acquisition instruments and soft-

ware. In this chapter, after a brief introduction to the data sets considered in this book,

we describe some basic components of spatio-temporal data structures in R, followed by

spatio-temporal visualization and exploratory tools. The chapter concludes with fairly ex-

tensive Labs that provide examples of R commands for data wrangling, visualization, and

exploratory data analysis.

When you discover the peaks and valleys, trends and seasonality, and changing land-

scapes in your data set, what then? Are they real or illusory? Are they important? Chapters

3–6 will give you the inferential and modeling skills required to answer these questions.

2.1 Spatio-Temporal Data

Time-series analysts consider univariate or multivariate sequential data as a random process

observed at regular or irregular intervals, where the process can be defined in continuous

time, discrete time, or where the temporal event is itself the random event (i.e., a point pro-

cess). Spatial statisticians consider spatial data as either temporal aggregations or tempor-

ally frozen states (“snapshots”) of a spatio-temporal process. Spatial data are traditionally

thought of as random according to either geostatistical, areal or lattice, or point process

(and sometimes random set) behavior. We think of geostatistical data as the kind where

we could have observations of some variable or variables of interest (e.g., temperature and

wind speed) at continuous locations over a given spatial domain, and where we seek to pre-

dict those variables at unknown locations in space (e.g., using interpolation methodology

17
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such as kriging). Lattice processes are defined on a finite or countable subset in space (e.g.,

grid nodes, pixels, polygons, small areas), such as the process defined by work-force indi-

cators on a specific political geography (e.g., counties in the USA) over a specific period

of time. A spatial point process is a stochastic process in which the locations of the points

(sometimes called events) are random over the spatial domain, where these events can have

attributes given in terms of marks (e.g., locations of trees in a forest are random events,

with the diameter at breast height being the mark). Given the proliferation of various data

sources and geographical information system (GIS) software, it is important to broaden the

perspective of spatial data to include not only points and polygons, but also lines, trajecto-

ries, and objects. It is also important to note that there can be significant differences in the

abundance of spatial information versus temporal information.

R tip: Space-time data are usually provided in comma-separated value (CSV) files,

which can be read into R using read.csv or read.table; shapefiles, which can

be read into R using functions from rgdal and maptools; NetCDF files, which can be

read into R using a variety of packages, such as ncdf4 and RNetCDF; and HDF5 files,

which can be read into R using the package h5.

It should not be surprising that data from spatio-temporal processes can be considered

from either a time-series perspective or a spatial-random-process perspective, as described

in the previous paragraph. In this book, we shall primarily consider spatio-temporal data

that can be described by processes that are discrete in time and either geostatistical or on a

lattice in space. For a discussion of a broader collection of spatio-temporal processes, see

Cressie and Wikle (2011), particularly Chapters 5–9.

Throughout this book, we consider the following data sets:

• NOAA daily weather data. These daily data originated from the US National Oceanic

and Atmospheric Administration (NOAA) National Climatic Data Center and can be

obtained from the IRI/LDEO Climate Data Library at Columbia University.1 The

data set we consider consists of four variables: daily maximum temperature (Tmax)

in degrees Fahrenheit (◦F), minimum temperature (Tmin) in ◦F, dew point tempera-

ture (TDP) in ◦F, and precipitation (Precip) in inches at 138 weather stations in the

central USA (between 32◦N–46◦N and 80◦W–100◦W), recorded between the years

1990 and 1993 (inclusive). These data are considered to be discrete and regular in

time (daily) and geostatistical and irregular in space. However, the data are not com-

plete, in that there are missing measurements at various stations and at various time

points, and the stations themselves are obviously not located everywhere in the cen-

tral USA. We will refer to these data as the “NOAA data set.” Three days of Tmax

measurements from the NOAA data set are shown in Figure 2.1.

1http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.DAILY/.FSOD/
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Figure 2.1: Maximum temperature (Tmax) in ◦F from the NOAA data set on 01, 15, and

30 May 1993.

Figure 2.2: Sea-surface temperature anomalies in ◦C for the month of January in the years

1989, 1993, and 1998. The year 1989 experienced a La Niña event (colder than normal

temperatures) while the year 1998 experienced an El Niño event (warmer than normal tem-

peratures).

• Sea-surface temperature anomalies. These sea-surface temperature (SST) anomaly

data are from the NOAA Climate Prediction Center as obtained from the IRI/LDEO

Climate Data Library at Columbia University.2 The data are gridded at a 2◦ by 2◦

resolution from 124◦E–70◦W and 30◦S–30◦N, and they represent monthly anomalies

from a January 1970–December 2003 climatology (averaged over time). We refer to

this data set as the “SST data set.” Three individual months from the SST data set are

shown in Figure 2.2.

• Breeding Bird Survey (BBS) counts. These data are from the North American Breed-

ing Bird Survey.3 In particular, we consider yearly counts of the house finch (Car-

podacus mexicanus) at BBS routes for the period 1966–2000 and the Carolina wren

2http://iridl.ldeo.columbia.edu/SOURCES/.CAC/
3K. L. Pardieck, D. J. Ziolkowski Jr., M. Lutmerding, and M.-A. R. Hudson, US Geological Survey, Patux-
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Figure 2.3: Counts of house finches between 1980 and 1999. The size of the points is

proportional the number of observed birds, while transparency is used to draw attention to

regions of high sampling density or high observed counts.

(Thryothorus ludovicianus) for the period 1967–2014. The BBS sampling unit is a

roadside route of length approximately 39.2 km. In each sampling unit, volunteer

observers make 50 stops and count birds for a period of 3 minutes when they run

their routes (typically in June). There are over 4000 routes in the North American

survey, but not all routes are available every year. For the purposes of the analyses

in this book, we consider the total route counts to occur yearly (during the breeding

season) and define the spatial location of each route to be the route’s centroid. Thus,

we consider the data to be discrete in time, geostatistical and irregular in space, and

non-Gaussian in the sense that they are counts. We refer to this data set as the “BBS

data set.” Counts of house finches for the period 1980–1999 are shown in Figure 2.3.

• Per capita personal income. We consider yearly per capita personal income (in dol-

lars) data from the US Bureau of Economic Analysis (BEA).4 These data have areal

spatial support corresponding to USA counties in the state of Missouri, and they

cover the period 1969–2014. We refer to this data set as the “BEA income data set.”

Figure 2.4 shows these data, on a log scale, for the individual years 1970, 1980, and

ent Wildlife Research Center (https://www.pwrc.usgs.gov/bbs/RawData/). Note that we used the

archived 2016.0 version of the data set, doi: 10.5066/F7W0944J, which is accessible through the data archive

link on the BBS website (ftp://ftpext.usgs.gov/pub/er/md/laurel/BBS/Archivefiles/

Version2016v0/).
4http://www.bea.gov/regional/downloadzip.cfm
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Figure 2.4: Per capita personal income (in dollars) by county for residents in Missouri in

the years 1970, 1980, and 1990, plotted on a log scale. The data have been adjusted for

inflation. Note how both the overall level of income as well as the spatial variation change

with time.

1990; note that these data have been adjusted for inflation.

• Sydney radar reflectivity. These data are a subset of consecutive weather radar re-

flectivity images considered in the World Weather Research Programme (WWRP)

Sydney 2000 Forecast Demonstration Project. There are 12 images at 10-minute in-

tervals starting at 08:25 UTC on 03 November, 2000 (i.e., 08:25–10:15 UTC). The

data were originally mapped to a 45× 45 grid of 2.5 km pixels centered on the radar

location. The data used in this book are for a region of dimension 28 × 40, cor-

responding to a 70 km by 100 km domain. All reflectivities are given in “decibels

relative to Z” (dBZ, a dimensionless logarithmic unit used for weather radar reflec-

tivities). We refer to this data set as the “Sydney radar data set.” For more details on

these data, shown in Figure 2.5, see Xu et al. (2005).

• Mediterranean winds. These data are east–west (u) and north–south (v) wind-

component observations over the Mediterranean region (from 6.5◦W–16.5◦E and

33.5◦N–45.5◦N) for 28 time periods (every 6 hours) from 00:00 UTC on 29 Jan-

uary 2005 to 18:00 UTC on 04 February 2005. There are two data sources: satellite

wind observations from the QuikSCAT scatterometer, and surface winds and pres-

sures from an analysis by the European Center for Medium Range Weather Forecast-

ing (ECMWF). The ECMWF-analysis winds and pressures are given on a 0.5◦×0.5◦

spatial grid (corresponding to 47 longitude locations and 25 latitude locations), and

they are available at each time period for all locations. The QuikSCAT observa-

tions are only available intermittently in space, due to the polar orbit of the satellite,

but at much higher spatial resolution (25 km) than the ECMWF data when they are

available. The QuikSCAT observations given for each time period correspond to all

observations available in the spatial domain within 3 hours of time periods stated

above. There are no QuikSCAT observations available at 00:00 UTC and 12:00 UTC

in the spatial domain and time periods considered here. We refer to this data set as

the “Mediterranean winds data set.” Figure 2.6 shows the wind vectors (“quivers”)
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Figure 2.5: Weather radar reflectivities in dBZ for Sydney, Australia, on 03 November

2000. The images correspond to consecutive 10-minute time intervals from 08:25 UTC to

10:15 UTC.

for the ECMWF data at 06:00 UTC on 01 February 2005. These data are a subset of

the data described in Cressie and Wikle (2011, Chapter 9) and Milliff et al. (2011).

2.2 Representation of Spatio-Temporal Data in R

Although there are many ways to represent spatial data and time-series data in R, there are

relatively few ways to represent spatio-temporal data. In this book we use the class defini-

tions defined in the R package spacetime. These classes extend those used for spatial data

in sp and time-series data in xts. For details, we refer the interested reader to the package

documentation and vignettes in Pebesma (2012). Here, we just provide a brief introduction

to some of the concepts that facilitate thinking about spatio-temporal data structures.

Although spatio-temporal data can come in quite sophisticated relational forms, they

most often come in the form of fairly simple “tables.” Pebesma (2012) classifies these

simple tables into three classes:

• time-wide, where columns correspond to different time points;
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Figure 2.6: ECMWF wind vector observations over the Mediterranean region for 06:00

UTC on 01 February 2005.

• space-wide, where columns correspond to different spatial features (e.g., locations,

regions, grid points, pixels);

• long formats, where each record corresponds to a specific time and space coordinate.

R tip: Data in long format are space inefficient, as spatial coordinates and time attributes

are required for each data point, whether or not data are on a lattice. However, it is

easy to subset and manipulate data in long format. Powerful “data wrangling” tools in

packages such as dplyr and tidyr, and visualization tools in ggplot2, are designed for

data in long format.

Tables are very useful elementary data objects. However, an object from the spacetime

package contains additional information, such as the map projection and the time zone.

Polygon objects may further contain the individual areas of the polygons as well as the

individual bounding boxes. These objects have elaborate, but consistent, class definitions

that greatly aid the geographical (e.g., spatial) component of the analysis.

Pebesma (2012) considers four classes of space-time data:

• full grid (STF), a combination of any sp object and any xts object to represent all

possible locations on the implied space-time lattice;
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• sparse grid (STS), as STF, but contains only the non-missing space-time combina-

tions on a space-time lattice;

• irregular (STI), an irregular space-time data structure, where each point is allocated

a spatial coordinate and a time stamp;

• simple trajectories (STT), a sequence of space-time points that form trajectories.

Note that the “grid” in the first two classes corresponds to a space-time lattice – but the

spatial locations may or may not be on a lattice! The sparse grid is most effective when

there are missing observations, or when there are a relatively few spatial locations that

have different time stamps, or when there are a relatively small number of times that have

differing spatial locations.

It is important to note that the class objects that make up the spacetime package are

not used to store data; this is accomplished through the use of the R data frame. As il-

lustrated in Lab 2.1 at the end of this chapter and in Pebesma (2012), there are several

important methods in sp and spacetime that help with the construction and manipulation

of these spatio-temporal data sets. In particular, there are methods to construct an object,

replace/select data or various spatial or temporal subsets, coerce spatio-temporal objects

to other classes, overlay spatio-temporal observations, and aggregate over space, time, or

space-time.

R tip: When spatio-temporal data have non-trivial support (i.e., a spatio-temporal region

over which a datum is defined), and if the geometry allows it, use SpatialPixels and not

SpatialPolygons as the underlying sp object. This results in faster geometric manipula-

tions such as when finding the overlap between points and polygons using the function

over.

2.3 Visualization of Spatio-Temporal Data

A picture – or a video – can be worth a thousand tables. Use of maps, color, and ani-

mation is a very powerful way to provide insight that suggests exploratory data analysis

that then leads to spatio-temporal models (Chapters 3–5). Although there are distinct chal-

lenges in visualizing spatio-temporal data due to the fact that several dimensions often have

to be considered simultaneously (e.g., two or three spatial dimensions and time), there are

some fairly common tools that can help explore such data visually. For the most part, we are

somewhat selective in what we present here as we want to convey fairly simple methods that

have consistently proven useful in our own work and in the broader literature. These can be

as simple as static spatial maps and time-series plots, or they can be interactive explorations
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of the data (e.g., Lamigueiro, 2018). In addition, because of the special dynamic compo-

nent of many spatio-temporal processes, where spatial processes evolve through time, it

is often quite useful to try to visualize this evolution. This can be done in the context of

one-dimensional space through a space-time (Hovmöller) plot, or more generally through

animations. We conclude by discussing an increasingly popular approach to help with vi-

sualization of very high-dimensional data.

R tip: Spatio-temporal visualization in R generally proceeds using one of two meth-

ods: the trellis graph or the grammar of graphics. The command plot invokes the

trellis graph when sp or spacetime objects are supplied as arguments. The commands

associated with the package ggplot2 invoke the grammar of graphics. The data objects

frequently need to be converted into a data frame in long format for use with ggplot2,

which we often use throughout this book.

2.3.1 Spatial Plots

Snapshots of spatial processes for a given time period can be plotted in numerous ways. If

the observations are irregular in space, then it is often useful to plot a symbol at the data

location and give it a different color and/or size to reflect the value of the observation. For

example, consider Tmax for 01 May 1993 from the NOAA data set plotted in the left panel

of Figure 2.1. In this case, the circle center corresponds to the measurement location and the

color of the filled-in circle corresponds to the value of the maximum temperature. Notice

the clear visual trend of decreasing temperatures from the southeast to the northwest over

this region of the USA.

Spatial plots of gridded data are often presented as contour plots, so-called “image”

plots, or surface plots. For example, Figure 2.2 shows image representations for three

individual months of the Pacific SST data set. Note the La Niña signal (cooler than normal

SSTs) in 1989 and the El Niño signal (warmer than normal SSTs) in 1998 in the tropical

Pacific Ocean. Figure 2.7 shows contour and surface representations of the SST anomalies

in January 1998, corresponding to the right panel (i.e., the El Niño event) in Figure 2.2.

It is often useful to plot a sequence of spatial maps for consecutive times to gain greater

insight into the changes in spatial patterns through time. Figure 2.8 shows a sequence of

SST spatial maps for the months January–June 1989. Note how the initially strong La Niña

event dissipates by June 1989.

R tip: Multiple time-indexed spatial maps can be plotted from one long-format table

using the functions facet_grid or facet_wrap in ggplot2 with time as a grouping

variable.
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Figure 2.7: Sea-surface temperature anomalies (in ◦C) for January 1998 as a contour plot

(top) and as a surface plot (bottom).

2.3.2 Time-Series Plots

It can be instructive to plot time series corresponding to an observation location, an aggrega-

tion of observations, or multiple locations simultaneously. For example, Figure 2.9 shows

time-series plots of daily Tmax for 10 of the NOAA stations (chosen randomly from the

139 stations) for the time period 01 May 1993–30 September 1993. The time-series plots

are quite noisy, as is to be expected from the variability inherent in mid-latitude weather

systems. However, there is an overall temporal trend corresponding to the annual seasonal
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Figure 2.8: Sea-surface temperature anomalies (in ◦C) for January–June 1989.

Figure 2.9: Maximum temperature (◦F) for ten stations chosen from the NOAA data set at

random, as a function of the day number, with the first day denoting 01 May 1993 and the

last day denoting 30 September 1993. The number in the grey heading of each plot denotes

the station ID.

cycle. That is, all of the time series appear to peak somewhat towards the center of the time

horizon, which corresponds to the month of July. In this case, since we are using only five

months of data, this trend appears to be roughly quadratic in time. Periodic functions are

often used when considering a whole year or multiple years of data, especially with weather

and economic data. Although all of these temperature series contain a seasonal component,

some appear shifted on the vertical axis (Tmax) relative to one another (e.g., station 13881

has higher temperatures than station 14897). This is due to the latitudinal trend apparent in

Figure 2.1.
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2.3.3 Hovmöller Plots

A Hovmöller plot (Hovmöller, 1949) is a two-dimensional space-time visualization in

which space is collapsed (projected or averaged) onto one dimension and where the second

dimension denotes time. These plots have traditionally been considered in the atmospheric-

science and ocean-science communities to visualize propagating features. For example, the

left panel of Figure 2.10 shows monthly SST anomalies averaged from 1◦S–1◦N and plot-

ted such that longitude (over the Pacific Ocean) is on the x-axis and time (from 1996 to

2003) is on the y-axis (increasing from top to bottom). The darker red colors correspond

to warmer than normal temperatures (i.e., El Niño events) and the darker blue colors corre-

spond to colder than normal temperatures (i.e., La Niña events). Propagation through time

is evident if a coherent color feature is “slanted.” In this plot, one can see several cases

of propagating features along the longitudinal axis (e.g., both of the major La Niña events

show propagation from the eastern longitudes towards the western longitudes.)

Hovmöller plots are straightforward to generate with regular spatio-temporal data, but

they can also be generated for irregular spatio-temporal data after suitable interpolation to

a regular space-time grid. For example, in Figure 2.11, we show Hovmöller plots for the

Tmax variable in the NOAA data set between 01 May 1993 and 30 September 1993. We

see that the temporal trend is fairly constant with longitude (left panel), but it decreases con-

siderably with increasing latitude (right panel) as expected, since overall maximum temper-

ature decreases with increasing latitude in the conterminous USA. Such displays may affect

modeling decisions of the trend (e.g., a time–latitude interaction might become evident in

such plots).

2.3.4 Interactive Plots

Programming tools for interactive visualization are becoming increasingly accessible.

These tools typically allow for a more data-immersive experience, and they allow one to

explore the data without having to resort to scripting. In the simplest of cases, one can

“hover” a cursor over a figure, and some information related to the data corresponding to

the current location of the cursor is conveyed to the user. For example, in Figure 2.12 we

show the interaction of the user with a spatial plot of SST using the package plotly. This

package works in combination with a web portal for more advanced exploration methods

(e.g., the exploration of three-dimensional data).

There are several interactive plots that may aid with the visualization of spatio-temporal

data. One of the most useful plots builds on linked brushing, with the link acting between

time and space. Here, one hovers a cursor over a spatial observation or highlights a spatial

area, and then the time series corresponding to that point or area is visualized; see Figure

2.12. This allows one to explore the time series corresponding to known geographic areas

with minimal effort. Code for generating a linked brush is available from the book’s website

(https://spacetimewithr.org).
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Figure 2.10: Hovmöller plots for both the longitude (left) and latitude (right) coordinates

for the SST data set. The color denotes the temperature anomaly in ◦C.

2.3.5 Animations

Everyone loves a movie. Animation captures our attention and can suggest structure in

a way that a sequence of still frames cannot. Good movies should be watched again and

again, and that is our intention here for understanding why the spatio-temporal data behave

the way they do.

An animation is typically constructed by plotting spatial data frame-by-frame, and then

stringing them together in sequence. When doing so, it is important to ensure that all

spatial axes and color scales remain constant across all frames. In situations with missing or

unequally spaced observations, one may sometimes improve the utility of an animation by

performing a simple interpolation (in space and/or time) before constructing the sequence.

Animations in R can be conveniently produced using the package animation. We provide

an example using this package in Lab 2.2.

2.3.6 Trelliscope: Visualizing Large Spatio-Temporal Data Sets

Most spatio-temporal statistical analyses to date have been carried out on manageable data

sets that can fit into a computer’s memory which, at the time of writing, was in the order of

a few tens or a couple of hundreds of gigabytes in size. Being able to visualize these data

is important and useful in many respects. Proceeding with modeling and prediction where
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Figure 2.11: Hovmöller plots for both the longitude (left) and latitude (right) coordinates

for the Tmax variable in the NOAA data set between 01 May 1993 and 30 September 1993,

where the data are interpolated as described in Lab 2.2. The color denotes the maximum

temperature in ◦F. The dashed lines correspond to the longitude and latitude coordinates of

station 13966 (compare to Figure 2.9).

Figure 2.12: Interactively exploring maximum temperatures on 01 May 1993 using the

NOAA data set. The “hover” feature can be added to ggplot2 objects by using ggplotly

from the package plotly (left). A linked brush can be used to explore the time series (right)

corresponding to a user-chosen set of spatial locations (middle) with the package ggvis.

not all the data can be processed in a single place (known as parallel-data algorithms) is an

active area of research and will not be discussed here.

The Trelliscope system, available with the package trelliscope, helps users visualize

massive data sets. The first advantage of trelliscope is that it facilitates exploration when,
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due to their size, the data may only be visualized using hundreds or thousands of plots

(or panels). When this is the case, the Trelliscope system can calculate subset summaries

(known as cognostics) that are then used for filtering and sorting the panels. For example,

consider the SST data set. If a grouping is made by month, then there are over 300 spatial

maps that can be visualized between, say, 1970 and 2003. Alternatively, one may decide

to visualize only those months in which the SST exceeded a certain maximum or minimum

threshold. One can formulate a cognostic using the monthly spatial mean values of SST

averaged over their spatial domain and visualize them in a quantile plot (see Figure 2.13).

The analyst can use this approach to quickly view the strongest El Niño and La Niña events

in this time period.

The second advantage is that the trelliscope package is designed to visualize data that

are on a distributed file system that may be residing on more than one node. The data are

processed in a divide and recombine fashion; that is, the data are divided and processed

by group in parallel fashion and then recombined. In trelliscope, this can be useful for

generating both the cognostics and the viewing panels efficiently. Therefore, the Trelliscope

system provides a way to visualize terabytes of space-time data but, as quoted in its package

manual, it “can also be very useful for small data sets.”

R tip: Processing and visualizing large data sets residing on a distributed file system

using divide and recombine may seem like a daunting task. The R package datadr,

which can be used together with trelliscope, provides an easy-to-use front-end for data

residing on distributed file systems. More importantly, it reduces the barrier to entry by

allowing the same, or very similar, code to be used for data residing in memory and data

residing on a distributed file system such as Hadoop.

2.3.7 Visualizing Uncertainty

One of the main things that separates statistics from other areas of data science is the focus

on uncertainty quantification. Uncertainties could be associated with data (e.g., measure-

ment error in satellite observations or sampling error in a survey), estimates (e.g., uncer-

tainty in regression parameter estimates), or predictions (e.g., uncertainties in a forecast of

SST anomalies). Taking a Bayesian point of view, uncertainties could also be associated

with the parameters themselves. In the case where these uncertainties are indexed in time,

space, or space-time, one can use any of the methods discussed in this section to produce

visualizations of these uncertainties. It is increasingly the case that one seeks methods to

visualize both the values of interest and their uncertainty simultaneously. This is challeng-

ing given the difficulties in visualizing information in multiple dimensions, and it is an

active area of research both in geography and statistics (see, for example, the discussion of
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Figure 2.13: Exploring a large spatio-temporal data set with Trelliscope. Quantile plot of

monthly averages of sea-surface temperature from the SST data set; the insets are what

would be displayed if the user highlighted the circle points, corresponding to El Niño and

La Niña events.

“visuanimation” in Genton et al., 2015). For a recent overview in the case of areal data, and

an accompanying R vignette, see Lucchesi and Wikle (2017) and the R package Vizumap.5

2.4 Exploratory Analysis of Spatio-Temporal Data

Visualization of data is certainly an important and necessary component of exploratory data

analysis. In addition, we often wish to explore spatio-temporal data in terms of summaries

of first-order and second-order characteristics. Here we consider visualizations of empir-

ical means and empirical covariances, spatio-temporal covariograms and semivariograms,

the use of empirical orthogonal functions and their associated principal-component time

series, and spatio-temporal canonical correlation analysis. To do this, we have to start using

some mathematical symbols and formulas. Mathematics is the language of science (and of

5https://doi.org/10.5281/zenodo.1479951
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statistical science), and we introduce this language along the way to help readers who are a

bit less fluent. For reference, we present some fundamental definitions of vectors and matri-

ces and their manipulation in Appendix A. Readers who are not familiar with the symbols

and basic manipulation of vectors and matrices would benefit from looking at this material

before proceeding.

2.4.1 Empirical Spatial Means and Covariances

It can be useful to explore spatio-temporal data by examining the empirical means and

empirical covariances. Assume for the moment that we have observations {Z(si; tj)} for

spatial locations {si : i = 1, . . . ,m} and times {tj : j = 1, . . . , T}. The empirical spatial

mean for location si, µ̂z,s(si), is then found by averaging over time:

µ̂z,s(si) ≡
1

T

T∑

j=1

Z(si; tj).

If we consider the means for all spatial data locations and assume that we have T observa-

tions at each location, then we can write down the spatial mean as anm-dimensional vector,

µ̂z,s, where

µ̂z,s ≡



µ̂z,s(s1)

...

µ̂z,s(sm)


 =




1

T

T∑

j=1

Z(s1; tj)

...

1

T

T∑

j=1

Z(sm; tj)




=
1

T

T∑

j=1

Ztj , (2.1)

and Ztj ≡ (Z(s1; tj), . . . , Z(sm; tj))
′.

This mean vector is a spatial quantity whose elements are indexed by their location.

Therefore, it can be plotted on a map, as in the case of the maximum temperature in the

NOAA data set (see Figure 2.1), or as a function of the spatial coordinates (e.g., longitude

or latitude) as in Figure 2.14. From these plots one can see that there is a clear trend in

the empirical spatial mean of maximum temperature with latitude, but not so much with

longitude. Note that one may not have the same number of observations at each location

to calculate the average, in which case each location in space must be calculated separately

(e.g., µ̂z,s(si) = (1/Ti)
∑Ti

j=1 Z(si; tj), where Ti is the number of time points at which

there are data at location si).

Additionally, one can average across space and plot the associated time series. The

empirical temporal mean for time tj , µ̂z,t(tj), is given by

µ̂z,t(tj) ≡
1

m

m∑

i=1

Z(si; tj). (2.2)
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Figure 2.14: Empirical spatial mean, µ̂z,s(·), of Tmax (in ◦F) as a function of station lon-

gitude (left) and station latitude (right).

For example, Figure 2.15 shows the time series of Tmax for the NOAA temperature data

set averaged across all of the spatial locations. This plot of the empirical temporal means

shows the seasonal nature of the mid-latitude temperature over the central USA, but it also

shows variations in that seasonal pattern due to specific large-scale weather systems.

R tip: Computing empirical means is quick and easy using functions in the package

dplyr. For example, to find a temporal average, the data in a long-format data frame can

first be grouped by spatial location using the function group_by. A mean can then be

computed for every spatial location using the function summarise. See Lab 2.1 for

more details on these functions.

It is often useful to consider the empirical spatial covariability in the spatio-temporal

data set. This covariability can be used to determine to what extent data points in the data

set covary (behave similarly) as a function of space and/or time. In the context of the data

described above, the empirical lag-τ covariance between spatial locations si and sk is given

by

Ĉ(τ)
z (si, sk) ≡

1

T − τ

T∑

j=τ+1

(Z(si; tj)− µ̂z,s(si))(Z(sk; tj − τ)− µ̂z,s(sk)), (2.3)

for τ = 0, 1, . . . , T − 1, which is called the empirical lag-τ spatial covariance. Note that

this is the average (over time) of the cross products of the centered observations at the two

Wikle, C. K., Zammit-Mangion, A., and Cressie, N. (2019), Spatio-Temporal Statistics with R, Boca Raton,

FL: Chapman & Hall/CRC. © 2019 Wikle, Zammit-Mangion, Cressie. https://spacetimewithr.org



Exploratory Analysis of Spatio-Temporal Data 35

Figure 2.15: Tmax data (in ◦F), from the NOAA data set (blue lines, where each blue line

corresponds to a station) and the empirical temporal mean µ̂z,t(·) (black line) computed

from (2.2), and t is in units of days, ranging from 01 May 1993 to 30 September 1993.

locations (si and sk); that is, (2.3) is a summary of the covariation of these data. It is often

useful to consider the m×m lag-τ empirical spatial covariance matrix, Ĉ
(τ)
z , in which the

(i, k)th element is given by (2.3). Alternatively, this can be calculated directly by

Ĉ(τ)
z ≡ 1

T − τ

T∑

j=τ+1

(Ztj − µ̂z,s)(Ztj−τ − µ̂z,s)
′; τ = 0, 1, . . . , T − 1. (2.4)

Thus, in order to find the lag-τ covariance matrices, we consider the cross products of the

residual vectors for each spatial location and each time point relative to its corresponding

time-averaged empirical spatial mean.

In general, it can be difficult to obtain any intuition from these matrices, since locations

in a two-dimensional space do not have a natural ordering. However, one can sometimes

gain insight by splitting the domain into “strips” corresponding to one of the spatial di-

mensions (e.g., longitudinal strips) and then plotting the associated covariance matrices for

those strips. For example, Figure 2.16 shows empirical covariance matrices for the max-

imum temperature in the NOAA data set (after, as shown in Lab 2.3, a quadratic trend in

time has been removed), split into four longitudinal strips. Not surprisingly, these empirical

spatial covariance matrices reveal the presence of spatial dependence in the residuals. The

lag-0 plots seem to be qualitatively similar, suggesting that there is no strong correlational

dependence on longitude but that there is a correlational dependence on latitude, with the

spatial covariance decreasing with decreasing latitude.

Wikle, C. K., Zammit-Mangion, A., and Cressie, N. (2019), Spatio-Temporal Statistics with R, Boca Raton,

FL: Chapman & Hall/CRC. © 2019 Wikle, Zammit-Mangion, Cressie. https://spacetimewithr.org



36 Exploring Spatio-Temporal Data

We can also calculate the empirical lag-τ cross-covariance matrix between two spatio-

temporal data sets, {Ztj} and {Xtj}, where {Xtj} corresponds to data vectors at n different

locations (but it is assumed for meaningful comparisons that they correspond to the same

time points). In particular, we define this m× n matrix by

Ĉ(τ)
z,x ≡ 1

T − τ

T∑

j=τ+1

(Ztj − µ̂z,s)(Xtj−τ − µ̂x,s)
′, (2.5)

for τ = 0, 1, . . . , T − 1, where µ̂x,s is the empirical spatial mean vector for the data {Xtj}.

Cross-covariances may be useful in characterizing the spatio-temporal dependence rela-

tionship between two different variables, for example maximum temperature and minimum

temperature.

Although not as common in spatio-temporal applications, one can also calculate empir-

ical temporal covariance matrices averaging across space (after removing temporal means

averaged across space). In this case, the time index is unidimensional and ordered, so one

does not have to work as hard on the interpretation as we did with empirical spatial covari-

ance matrices.

2.4.2 Spatio-Temporal Covariograms and Semivariograms

In Chapter 4 we shall see that it is necessary to characterize the joint spatio-temporal de-

pendence structure of a spatio-temporal process in order to perform optimal prediction (i.e.,

kriging). Thus, for measures of the joint spatio-temporal dependence, we consider empir-

ical spatio-temporal covariograms (and their close cousins, semivariograms). The biggest

difference between what we are doing here and the covariance estimates in the previous

section is that we are interested in characterizing the covariability in the spatio-temporal

data as a function of specific lags in time and in space. Note that the lag in time is a scalar,

but the lag in space is a vector (corresponding to the displacement between locations in

d-dimensional space).

Consider the empirical spatio-temporal covariance function for various space and time

lags. Here, we make an assumption that the first moment (mean) depends on space but not

on time and that the second moment (covariance) depends only on the lag differences in

space and time. Then the empirical spatio-temporal covariogram for spatial lag h and time

lag τ is given by

Ĉz(h; τ) =
1

|Ns(h)|
1

|Nt(τ)|
∑

si,sk∈Ns(h)

∑

tj ,tℓ∈Nt(τ)

(Z(si; tj)− µ̂z,s(si))(Z(sk; tℓ)− µ̂z,s(sk)),

(2.6)

where you will recall that µ̂z,s(si) = (1/T )
∑T

j=1 Z(si; tj), Ns(h) refers to the pairs of

spatial locations with spatial lag within some tolerance of h, Nt(τ) refers to the pairs of

time points with time lag within some tolerance of τ , and |N(·)| refers to the number of

elements inN(·). Under isotropy, one often considers the lag only as a function of distance,

h = ||h||, where || · || is the Euclidean norm (see Appendix A).
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Figure 2.16: Maximum temperature lag-0 (top) and lag-1 (bottom) empir-

ical spatial covariance plots for four longitudinal strips (from left to right,

[−100,−95), [−95,−90), [−90,−85), [−85,−80) degrees) in which the domain of

interest is subdivided.

Technical Note 2.1: Semivariogram

The semivariogram is defined as

γz(si, sk; tj , tℓ) ≡
1

2
var(Z(si; tj)− Z(sk; tℓ)).

In the case where the covariance depends only on displacements in space and differences

in time, this can be written as

γz(h; τ) =
1

2
var(Z(s+ h; t+ τ)− Z(s; t))

= Cz(0; 0)− cov(Z(s+ h; t+ τ), Z(s; t))

= Cz(0; 0)− Cz(h; τ), (2.7)

where h = sk − si is a spatial lag and τ = tℓ − tj is a temporal lag.

Now, (2.7) does not always hold. It is possible that γz is a function of spatial lag h and

temporal lag τ , but there is no stationary covariance function Cz(h; τ). We generally
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try to avoid these models of covariability by fitting trend terms that are linear and/or

quadratic in spatio-temporal coordinates.

If the covariance function of the process is well defined, then the semivariogram is

generally characterized by the nugget effect, the sill, and the partial sill. The nugget

effect is given by γz(h; τ) when h → 0 and τ → 0, while the sill is γz(h; τ) when

h → ∞ and τ → ∞. The partial sill is the difference between the sill and the nugget

effect. The diagram below shows these components of a semivariogram as a function of

spatial distance ‖h‖.

In some kriging applications, one might be interested in looking at the empirical spatio-

temporal semivariogram (see Technical Note 2.1). The empirical semivariogram, for the

case where the covariance only depends on the displacements in space and the time lags,

is obtained from (2.6) as γ̂z(h; τ) = Ĉz(0; 0) − Ĉz(h; τ), and so it is easy to go back

and forth between the empirical semivariogram and the covariogram in this case (see the

caveat in Technical Note 2.1). Assuming a constant spatial mean µz,s, then (2.7) can be

equivalently written as

γz(h; τ) =
1

2
E (Z(s+ h; t+ τ)− Z(s; t))2 ,

and hence an alternative estimate is

γ̂z(h; τ) =
1

|Ns(h)|
1

|Nt(τ)|
∑

si,sk∈Ns(h)

∑

tj ,tℓ∈Nt(τ)

(Z(si; tj)− Z(sk; tℓ))
2, (2.8)

where the notation in (2.8) is the same as used above in (2.6). Note that this calculation

does not need any information about the spatial means. Figure 2.17 shows a semivariogram

obtained from the NOAA data set for the maximum temperature data in July 1993.
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Figure 2.17: Empirical spatio-temporal semivariogram of daily Tmax from the NOAA data

set during July 2003, computed using the function variogram in gstat.

2.4.3 Empirical Orthogonal Functions (EOFs)

Empirical orthogonal functions (EOFs) can reveal spatial structure in spatio-temporal data

and can also be used for subsequent dimensionality reduction. EOFs came out of the met-

eorology/climatology literature, and in the context of discrete space and time, EOF analysis

is the spatio-temporal manifestation of principal component analysis (PCA) in statistics (see

Chapter 5 in Cressie and Wikle, 2011, for an extensive overview). In the terminology of

this chapter, one should probably modify “EOFs” to empirical spatial orthogonal functions,

since they are obtained from an empirical spatial covariance matrix, but for legacy reasons

we stick with “EOFs.” Before we discuss EOFs, we give a brief review of PCA.

Brief Review of Principal Component Analysis

Assume we have two measured traits on a subject of interest (e.g., measurements of x1 =
height (in cm) and x2 = weight (in kg) in a sample of women in the USA). Figure 2.18 (left

panel) shows a (simulated) plot of what such data might look like for m = 500 individuals.

We note that these data are quite correlated, as expected. Now, we wish to construct new

variables that are linear combinations of the measured traits, say a1 = w11x1 + w12x2 and

a2 = w21x1 + w22x2. One way to think of this is that we are “projecting” the original data

onto new axes given by the variables a1 and a2. Figure 2.18 (center and right panels) shows
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Figure 2.18: Simulated height (in cm) versus weight (in kg) for m = 500 females in the

USA (left) with two orthogonal projections (center and right). The right panel shows the

optimal PCA projection.

two possible projections, which differ according to the values we choose for the weights,

{w11, w12, w21, w22}. Note that in the case of the right-hand panel in Figure 2.18, the new

axis a1 aligns with the axis of largest variation, and the new axis a2 corresponds to the

axis of largest variation perpendicular (orthogonal) to the axis a1. Maximizing these axes

of variation subject to orthogonality helps us think about decomposing the data into lower-

dimensional representations in an optimal way. That is, the new variable on the axis a1
represents the optimal linear combination of the data that accounts for the most variation in

the original data. If the variation along the other axis (a2) is fairly small relative to a1, then

it might be sufficient just to consider a1 to represent the data.

How does one go about choosing the weights {wij}? Let xi = (x1i, . . . , xpi)
′ be

a random vector with variance–covariance matrix Cx. Note from Appendix A that by

spectral decomposition, a p × p non-negative-definite, symmetric, real matrix, Σ, can be

diagonalized such that W′ΣW = Λ (i.e., Σ = WΛW′), where Λ is a diagonal matrix

containing the eigenvalues {λi} of Σ (where λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0) and W =
[w1 w2 . . . wp] is the associated matrix of orthogonal eigenvectors, {wi} (i.e., WW′ =
W′W = I); thus, Cx = WΛxW

′. It can be shown that these eigenvectors give the

optimal weights, so that w1 are the weights for a1 and w2 are the weights for a2, and so on.

As an example, consider the variance–covariance matrix associated with the simulated

height and weight traits, where p = 2:

Cx =

(
81 50
50 49

)
.

Then W and Λx are given (using the function eigen in R) by

W =

(
−0.8077 0.5896
−0.5896 −0.8077

)
, Λx =

(
117.5 0

0 12.5

)
.
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Figure 2.19: Principal components corresponding to the simulated data in Figure 2.18.

So, for each of the observation vectors, {xi, i = 1, . . . , 500}, we make new variables

a1i = −0.8077x1i − 0.5896x2i

a2i = 0.5896x1i − 0.8077x2i.

These coefficients (which are the data projected onto axes (a1, a2)) are plotted in Figure

2.19. Note that these new variables are uncorrelated (no slant to the points in the plot)

and the first axis (a1) corresponds to the one that has the most variability. In PCA, one

sometimes attempts to interpret the “loadings” given by {wi : i = 1, . . . , p} (or some

scaled version of them). That is, one contrasts the signs and magnitudes of the loadings

within a given eigenvector (e.g., the first eigenvector, w1 = (−0.8077,−0.5896)′, suggests

that both height and weight are important and vary in the same way, so that the first principal

component might represent an overall “size” attribute).

The notions presented in the example above extend to more than just two traits and, in

general, the principal-component decomposition has some nice properties. For example,

the kth eigenvalue is the variance of the associated linear combination of the elements of x;

that is, var(ak) = var(w′
kx) = λk. In addition,

var(x1) + . . . var(xp) = trace(Cx) = λ1 + . . .+ λp = var(a1) + . . .+ var(ap).

Thus, one can consider the proportion of the total variance accounted for by the kth principal

component, which is λk/
∑p

j=1 λj . In the example above, the first principal component ac-

counts for about 90% of the variance in the original data (i.e., λ1/(λ1+λ2) = 117.5/130 =
0.90).

Of course, in practice we would not know the covariance matrix, Cx, but we can cal-

culate an empirical covariance matrix using (2.4) with τ = 0, {Ztj} replaced by {xi}, and

µ̂z,s replaced by (1/500)
∑500

i=1 xi. In that case, the spectral decomposition of Ĉx gives
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empirical estimates of the eigenvectors Ŵ and eigenvalues Λ̂x. The analysis then proceeds

with these empirical estimates.

R tip: The PCA routine prcomp is included with base R. When the plot function is

used on an object returned by prcomp, the variances of the principal components are

displayed. The function biplot returns a plot showing how the observations relate to

the principal components.

Empirical Orthogonal Functions

The study of EOFs is related to PCA in the sense that the “traits” of the multivariate data

vector now are spatially indexed, and the samples are usually taken over time. It is shown in

Cressie and Wikle (2011, Chapter 5) that the EOFs can be obtained from the data through

either a spectral decomposition of an empirical (spatial or temporal) covariance matrix or a

singular value decomposition (SVD) of a centered data matrix (see Technical Note 2.2).

Let Ztj ≡ (Z(s1; tj), . . . , Z(sm; tj))
′ for j = 1, . . . , T . Using (2.4) to estimate the

lag-0 spatial covariance matrix, Ĉ
(0)
z (which is symmetric and non-negative-definite), the

PCA decomposition is given by the spectral decomposition

Ĉ(0)
z = ΨΛΨ′, (2.9)

where Ψ ≡ (ψ1, . . . ,ψm) is a matrix of spatially indexed eigenvectors given by the vectors

ψk ≡ (ψk(s1), . . . , ψk(sm))′ for k = 1, . . . ,m, and Λ ≡ diag(λ1, . . . , λm) is a diagonal

matrix of corresponding non-negative eigenvalues (decreasing down the diagonal). The

eigenvectors are called “EOFs” and are often plotted as spatial maps (since they are spatially

indexed, which is also why Ψ is used to distinguish them from the more general PCA

weights, W, above). For k = 1, . . . ,m, the so-called kth principal component (PC) time

series are given by ak(tj) ≡ ψ′
kZtj , where j = 1, . . . , T . From PCA considerations, the

EOFs have the nice property that ψ1 provides the linear coefficients such that var(a1) = λ1
is maximized, ψ2 provides the linear coefficients such that var(a2) = λ2 accounts for the

next largest variance such that cov(a1, a2) = 0, and so on. As with the principal compon-

ents in PCA, the EOFs form a discrete orthonormal basis (i.e., Ψ′Ψ = ΨΨ′ = I).

There are two primary uses for EOFs. First, it is sometimes the case that one can gain

some understanding about important spatial patterns of variability in a sequence of spatio-

temporal data by examining the EOF coefficient maps (loadings). But care must be taken

not to interpret the EOF spatial structures in terms of dynamical or kinematic properties

of the underlying process (see, for example, Monahan et al., 2009). Second, these bases

can be quite useful for dimension reduction in a random-effects spatial or spatio-temporal

representation (see Section 4.4), although again, in general, they are not “optimal” bases in

terms of reduced-order dynamical systems.

Wikle, C. K., Zammit-Mangion, A., and Cressie, N. (2019), Spatio-Temporal Statistics with R, Boca Raton,

FL: Chapman & Hall/CRC. © 2019 Wikle, Zammit-Mangion, Cressie. https://spacetimewithr.org



Exploratory Analysis of Spatio-Temporal Data 43

Technical Note 2.2: Calculating EOFs

As stated above, EOFs can be calculated directly from the spectral decomposition of the

empirical lag-0 spatial covariance matrix (2.9). However, they are more often obtained

directly through a singular value decomposition (SVD, see Appendix A), which provides

computational benefits in some situations. To see the equivalence, first we show how to

calculate the empirical covariance-based EOFs. Let Z ≡ [Z1, . . . ,ZT ]
′ be the T × m

space-wide data matrix and then let Z̃ be the “detrended” and scaled data matrix,

Z̃ ≡ 1√
T − 1

(Z− 1T µ̂
′
z,s), (2.10)

where 1T is a T -dimensional vector of ones and µ̂z,s is the spatial mean vector given by

(2.1). Then it is easy to show that

C(0)
z = Z̃′Z̃ = ΨΛΨ′, (2.11)

and the principal component (PC) time series are given by the columns of A =
(
√
T − 1)Z̃Ψ; that is, they are projections of the detrended data matrix onto the EOF

basis functions, Ψ. The normalized PC time series are then given by Anorm ≡ AΛ−1/2;

these are just the PC time series divided by their standard deviation (i.e., the square root

of the associated eigenvalue), so that the temporal variance of the normalized time series

is equal to one. This normalization allows the m time series to be plotted on the same

scale, leaving their relative importance to be captured by their corresponding eigenval-

ues.

Now, consider the SVD of the detrended and scaled data matrix,

Z̃ = UDV′, (2.12)

where U is the T × T matrix of left singular vectors, D is a T ×m matrix containing

singular values on the main diagonal, and V is an m × m matrix containing the right

singular vectors, where both U and V are orthonormal matrices. Upon substituting

(2.12) into (2.11), it is easy to see that the EOFs are given by Ψ = V, and Λ = D′D.

In addition, it is straightforward to show that A = (
√
T − 1)UD and that the first m

columns of (
√
T − 1)U correspond to the normalized PC time series, Anorm. Thus, the

advantages of the SVD calculation approach are: (1) we do not need to calculate the

empirical spatial covariance matrix; (2) we get the normalized PC time series and EOFs

simultaneously; and (3) the procedure still works when T < m. The case of T < m

can be problematic in the covariance context since then C
(0)
z is not positive-definite,

although, as shown in Cressie and Wikle (2011, Section 5.3.4), in this case one can still

calculate the EOFs and PC time series.
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Figure 2.20: The first two empirical orthogonal functions and normalized principal-

component time series for the SST data set obtained using an SVD of a space-wide matrix.

Figures 2.20 and 2.21 show the first four EOFs and PC time series for the SST data set.

In this case, the number of spatial locations m = 2261, and the number of time points T =
399. The first four EOFs account for slightly more than 60% of the variation in the data.

The EOF spatial patterns show strong variability in the eastern and central tropical Pacific,

and they are known to be related to the El Niño and La Niña climate patterns that dominate

the tropical Pacific SST variability. The corresponding PC time series (particularly for the

first EOF) show time periods at which the data project very strongly on this spatial pattern

(both in terms of large positive and large negative values), and it can be shown that these

times correspond to strong El Niño and La Niña events, respectively.
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Figure 2.21: The third and fourth empirical orthogonal functions and normalized principal-

component time series for the SST data set obtained using an SVD of a space-wide matrix.

How many EOFs should one consider? This is a long-standing question in PCA, and

there are numerous suggestions. Perhaps the simplest is just to consider the number of

EOFs that account for some desired proportion of overall variance. Alternatively, one can

produce a scree plot, which is a plot of the relative variance associated with each eigenvalue

of the EOF as a function of the index of that EOF (see Figure 2.22), and where the sum

of all relative variances is 1. One typically sees a fairly quick drop in relative variance

with increasing order of the eigenvalue, and then the variance reduction flattens out. It is

sometimes recommended that one only focus on those EOFs before the index that begins the

flat part of the curve; this choice of index can be a bit subjective. One can also get a sense as

to the “significance” of each component by comparing the relative variances to those in an
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Figure 2.22: Scree plot for the EOF analysis of the SST data. The black symbols corre-

spond to the relative variance associated with the ordered eigenvalues. The red symbols

correspond to (very tight) boxplots of the relative variance associated with the eigenvalues

from 100 EOF analyses in which the SST values at the spatial locations were randomly

permuted for each time point.

EOF analysis in which the values for each spatial location are randomly permuted at each

time (see, for example, Hastie et al., 2009, Chapter 14). Then, one plots the scree plot with

the actual data superimposed on the permuted data. We recommend that the EOFs retained

are around the index at which the two “curves” intersect. For example, the black symbols

in Figure 2.22 correspond to the relative variance associated with the first 50 EOFs for the

SST data, and the red symbols are the very tight boxplots of relative variances obtained from

EOF analyses of 100 random permutations of the data. One can see that by about index 12,

the scree plot of the actual data and the boxplots are starting to intersect, suggesting that

there is very little “real” variability being accounted for by the EOFs with indices greater

than about 12.

Some Technical Comments on Empirical Orthogonal Functions

The EOF decomposition is sometimes derived in a continuous-space context through a

Karhunen–Loève expansion, with eigenvalues and eigenfunctions obtained through a solu-

tion of a Fredholm integral equation (see the overview in Cressie and Wikle, 2011, Section

5.3). This is relevant, as it shows why one should account for the area/support associated

with each spatial observation when working in a discrete-space EOF environment. In partic-

ular, one should multiply the elements of the eigenvectors by the square root of the length,

area, or volume of the spatial support associated with that spatial observation (e.g., Cohen

and Jones, 1969). For example, consider spatial location si; for each of the k eigenvectors,

one should multiply ψk(si) by
√
ei, where ei is the length, area, or volume associated with
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location si (and we assume that not all of the {ei} are identical). This modification to the

eigenvectors ψ1, . . . ,ψk must be done before calculating the PC time series.

Although most EOF analyses in the spatio-temporal context consider spatial EOFs and

PC time series, one can certainly consider the analogous decomposition in which the EOFs

are time-series bases and the projection of the data onto these bases is given by PC spatial

fields. Implementation is straightforward – one either works with the temporal covariance

matrix (averaging over spatial location) or considers the SVD of an m × T (temporally

detrended) data matrix. EOF time series are used as temporal basis functions in a spatio-

temporal model in Lab 4.3.

It is also important to note that in cases where EOF analysis is used for dimension

reduction (see Section 4.3), it is often necessary to either interpolate the EOFs in a sensible

manner (e.g., Obled and Creutin, 1986) or “pre-interpolate” the data onto a finely gridded

spatial domain.

Finally, there are many extensions to the basic EOF analysis presented here, including

so-called complex EOFs, cyclostationary EOFs, multivariate EOFs, and extended EOFs.

These all have particular utility depending on the type of data and the goal of the ana-

lysis. For example, complex EOFs are used for trying to identify propagating features that

account for a significant amount of variation in the data. Cyclostationary EOFs are ap-

propriate when there are strong periodicities in the data and spatial variation is expected

to shift dramatically within this periodicity. Multivariate EOFs are considered when mul-

tivariate spatial data are observed at the same time points. Extended EOFs are useful for

understanding spatial patterns associated with temporal lags. These methods are described

in more detail in Cressie and Wikle (2011, Section 5.3) and the references therein. In Lab

2.3 we will demonstrate the “classic” EOF analysis in R.

2.4.4 Spatio-Temporal Canonical Correlation Analysis

In multivariate statistics, canonical correlation analysis (CCA) seeks to create new variables

that are linear combinations of two multivariate data sets (separately) such that the corre-

lations between these new variables are maximized (e.g., Hotelling, 1936). Such methods

can be extended to the case where the two data sets are indexed in space and time, typically

where a spatial location corresponds to a “trait” in a multivariate set of “traits” (this ter-

minology is borrowed from psychometrics). Time corresponds to the samples. (Note that

just as with EOFs, one can reverse the roles of space and time in this setting as well.) A

spatio-temporal CCA (ST-CCA) is given below where spatial location corresponds to the

multivariate trait.

Assume that we have two data sets that have the same temporal domain of interest

but potentially different spatial domains. In particular, consider the data sets given by

the collection of spatial vectors {Ztj ≡ (Z(s1; tj), . . . , Z(sm; tj))
′ : j = 1, . . . , T}, and

{Xtj ≡ (X(r1; tj), . . . , X(rn; tj))
′ : j = 1, . . . , T}. Now, consider the two new variables
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that are linear combinations of Ztj and Xtj , respectively:

ak(tj) =
m∑

i=1

ξik Z(si; tj) = ξ
′
kZtj , (2.13)

bk(tj) =

n∑

ℓ=1

ψℓk X(rℓ; tj) = ψ
′
kXtj . (2.14)

For suitable choices of weights (see below), the kth canonical correlation, for k =
1, 2, . . . ,min{n,m}, is then simply the correlation between ak and bk,

rk ≡ corr(ak, bk) =
cov(ak, bk)√

var(ak)
√

var(bk)
,

which can also be written as

rk =
ξ′kC

(0)
z,xψk

(ξ′kC
(0)
z ξk)

1/2(ψ′
kC

(0)
x ψk)

1/2
, (2.15)

where the variance–covariance matrices C
(0)
z and C

(0)
x are of dimension m×m and n×n,

respectively, and the cross-covariance matrix C
(0)
z,x ≡ cov(Z,X) has dimension m× n. So

the first pair of canonical variables corresponds to the weights ξ1 and ψ1 that maximize r1
in (2.15). In addition, we standardize these weights such that the new canonical variables

have unit variance. Given this first pair of canonical variables, we can then find a second

pair, ξ2 andψ2, associated with {a2, b2} that are uncorrelated with {a1, b1}, have unit vari-

ance, and maximize r2 in (2.15). This procedure continues so that the kth set of canonical

variables are the linear combinations, {ak, bk}, that have unit variance, are uncorrelated

with the previous k − 1 canonical variable pairs, and maximize rk in (2.15). A specific

procedure for calculating ST-CCA is given in Technical Note 2.3.

Because the weights given by ξk and ψk are indexed in space, they can be plotted as

spatial maps, and the associated canonical variables can be plotted as time series. From an

interpretation perspective, the time series of the first few canonical variables typically match

up fairly closely (given they are optimized to maximize correlation), and the spatial patterns

in the weights show the areas in space that are most responsible for the high correlations.

Like EOFs, principal components, and other such approaches, one has to be careful with

the interpretation of canonical variables beyond the first pair, given the restriction that CCA

time series are uncorrelated. In addition, given that high canonical correlations within a

canonical pair naturally result from this procedure, one has to be careful in evaluating the

importance of that correlation. One way to do this is to randomly permute the spatial

locations in the Ztj and Xtj data vectors (separately) and recalculate the ST-CCA many

times, thereby giving a permutation-based range of canonical correlations when there is no

real structural relationship between the variables.
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In addition to the consideration of two separate data sets, one can perform an ST-CCA

between Ztj and, say, Xtj ≡ Ztj−τ , a τ -lagged version of the Ztj data. This “one-field ST-

CCA” is often useful for exploratory data analysis or for generating a forecast of a spatial

field. Some binning of the spatio-temporal data into temporal bins lagged by τ may be

needed in practice.

Finally, in practice, because the covariance matrices required to implement ST-CCA

are often fairly noisy (and even singular), depending on the sample size, we typically first

project the data into a lower dimension using EOFs for computational stability (see Cressie

and Wikle, 2011, Section 5.6.1). This is the approach we take in Lab 2.3.

As an example of ST-CCA, we consider a one-field ST-CCA on the SST data set. In

particular, we are interested in forecasting SST seven months in the future, so we let the

data X be the lag τ = 7 month SST data and the data Z be the same SSTs with no lag.

However, because T < max {m,n} for these data, we first project the data onto the first

10 EOFs (which account for about 74% of the variance in the data). For the projected data,

Figure 2.23 shows the first canonical variables (i.e., {a1(tj), b1(tj) : j = 1, . . . , T}), plot-

ted as individual time series and which correspond to a canonical correlation of r1 = 0.843.

Figure 2.24 shows the corresponding spatial-weights maps for ξ1 and ψ1, respectively. In

this example, it can be seen from the time-series plots that the series are quite highly cor-

related, and it can be shown that the large peaks correspond to known El Niño Southern

Oscillation (ENSO) events. Similarly, the left panel of Figure 2.24 suggests a precursor

pattern to the SST field in the right panel.

Technical Note 2.3: Calculating ST-CCA

First, let k = 1 and, because C
(0)
z and C

(0)
x are positive-definite, note that we can write

C
(0)
z = (C

(0)
z )1/2(C

(0)
z )1/2 and C

(0)
x = (C

(0)
x )1/2(C

(0)
x )1/2 (see Appendix A). Thus,

from (2.15), the square of the canonical correlation can be written as

r21 =
[ξ̃

′

1(C
(0)
z )−1/2C

(0)
z,x(C

(0)
x )−1/2ψ̃1]

2

(ξ̃
′

1ξ̃1)(ψ̃
′

1ψ̃1)
, (2.16)

with ξ̃1 ≡ (C
(0)
z )1/2ξ1 and ψ̃1 ≡ (C

(0)
x )1/2ψ1, the so-called normalized weights. The

CCA problem is now solved if we can find the ξ̃1 and ψ̃1 that maximize (2.16). In

the multivariate statistics literature (e.g., Johnson and Wichern, 1992, p. 463) it is well

known that r21 corresponds to the largest singular value of the singular value decomposi-

tion (SVD; see Appendix A) of

(C(0)
z )−1/2C(0)

z,x(C
(0)
x )−1/2, (2.17)

where the normalized weight vectors ξ̃1 and ψ̃1 are the left and right singular vectors,

respectively. Then we can obtain the unnormalized weights, ξ1 and ψ1, through ξ1 ≡
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Figure 2.23: Time series of the first canonical variables, {a1, b1}, for τ = 7 month lagged

monthly SST anomalies at time tj − τ (blue) and those at time tj (red).

(C
(0)
z )−1/2ξ̃1 and ψ1 ≡ (C

(0)
x )−1/2ψ̃1, respectively. As mentioned above, these are

the first ST-CCA pattern maps. The corresponding time series of ST-CCA canonical

variables are then calculated directly from a1(tj) = ξ′1Ztj and b1(tj) = ψ′
1Xtj , for

j = 1, . . . , T . More generally, ξ̃k and ψ̃k correspond to the left and right singular vectors

associated with the kth singular value (r2k) in the SVD of (2.17). Then the unnormalized

spatial-weights maps and the canonical time series are obtained analogously to the k = 1
case.

In practice, to evaluate the SVD in (2.17), we must first calculate the empirical covari-

ance matrices Ĉ
(0)
z , Ĉ

(0)
x using (2.4), as well as the empirical cross-covariance matrix

Ĉ
(0)
z,x given by (2.5). Finally, we consider the SVD of (Ĉ

(0)
z )−1/2Ĉ

(0)
z,x(Ĉ

(0)
x )−1/2. As

mentioned in the text, the empirical covariance matrices can be unstable (or singular)

unless T ≫ max(n,m), and so it is customary to work in EOF space; that is, project the

data for one or both variables onto a lower-dimensional space given by a relatively few

EOFs before carrying out ST-CCA.

2.5 Chapter 2 Wrap-Up

There were three main goals in this chapter. First, we wanted to expose the reader to some

basic ideas about data structures in R that are useful for working with spatio-temporal data.

Next, we wanted to illustrate some useful ways to visualize spatio-temporal data, noting

that it can be particularly challenging to visualize dynamical evolution of spatial fields

either without collapsing the spatial component onto one spatial dimension (e.g., as with

the Hovmöller plots) or through animation. Finally, we wanted to describe some standard
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Figure 2.24: Spatial-weights maps corresponding to the linear combination of EOFs used to

construct the canonical variables for SST data lagged τ = 7 months (left) and the unlagged

SST data (right).

ways to explore spatio-temporal data in preparation for developing models in Chapter 3.

In particular, we discussed the exploration of the first moments (means) in space or time,

and the second-order structures (covariances) either jointly in space and time, or averaged

over one of the dimensions (usually the time dimension) to give covariance and cross-

covariance matrices. Stepping up the technical level, we considered eigenvector approaches

to explore the structure and potentially reduce the dimensionality of the spatio-temporal

data. Specifically, we considered EOFs and ST-CCA. Of these, the EOFs are the most

ubiquitous in the literature. Even if the technical details were a bit elaborate, the end result

is a powerful and interpretable visualization and exploration of spatio-temporal variability.

You now have the survival skills to start building statistical models for spatio-temporal

data, with the goal of spatial prediction, parameter inference, or temporal forecasting. In

subsequent chapters, spatio-temporal statistical models will be discussed from an intro-

ductory perspective in Chapter 3, from a descriptive perspective in Chapter 4, and from a

dynamic perspective in Chapter 5.

Lab 2.1: Data Wrangling

Spatio-temporal modeling and prediction generally involve substantial amounts of data that

are available to the user in a variety of forms, but more often than not as tables in CSV files

or text files. A considerable amount of time is usually spent in loading the data and pre-

processing them in order to put them into a form that is suitable for analysis. Fortunately,

there are several packages in R that help the user achieve these goals quickly; here we focus

on the packages dplyr and tidyr, which contain functions particularly suited for the data

manipulation techniques that are required. We first load the required packages, as well as

STRbook (visit https://spacetimewithr.org for instructions on how to install

STRbook).
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library("dplyr")

library("tidyr")

library("STRbook")

As running example we will consider the NOAA data set, which was provided to us as

text in tables and is available with the package STRbook. There are six data tables:

• Stationinfo.dat. This table contains 328 rows (one for each station) and three

columns (station ID, latitude coordinate, and longitude coordinate) containing infor-

mation on the stations’ locations.

• Times_1990.dat. This table contains 1461 rows (one for each day between 01

January 1990 and 30 December 1993) and four columns (Julian date, year, month,

day) containing the data time stamps.

• Tmax_1990.dat. This table contains 1461 rows (one for each time point) and 328

columns (one for each station location) containing all maximum temperature data

with missing values coded as −9999.

• Tmin_1990.dat. Same as Tmax_1990.dat but containing minimum tempera-

ture data.

• TDP_1990.dat. Same as Tmax_1990.dat but containing temperature dew

point data with missing values coded as −999.90001.

• Precip_1990.dat. Same as Tmax_1990.dat but containing precipitation data

with missing values coded as −99.989998.

The first task is to reconcile all these data into one object. Before seeing how to use the

spatio-temporal data classes to do this, we first consider the rather simpler task of reconcil-

ing them into a standard R data frame in long format.

Working with Spatio-Temporal Data in Long Format

The station locations, time stamps and maximum temperature data can be loaded into R

from STRbook as follows.

locs <- read.table(system.file("extdata", "Stationinfo.dat",

package = "STRbook"),

col.names = c("id", "lat", "lon"))

Times <- read.table(system.file("extdata", "Times_1990.dat",

package = "STRbook"),

col.names = c("julian", "year", "month", "day"))

Tmax <- read.table(system.file("extdata", "Tmax_1990.dat",

package = "STRbook"))
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In this case, system.file and its arguments are used to locate the data within the pack-

age STRbook, while read.table is the most important function used in R for reading

data input from text files. By default, read.table assumes that data items are separated

by a blank space, but this can be changed using the argument sep. Other important data

input functions worth looking up include read.csv for comma-separated value files, and

read.delim.

Above we have added the column names to the data locs and Times since these

were not available with the original text tables. Since we did not assign column names

to Tmax, the column names are the default ones assigned by read.table, that is, V1,

V2, ..., V328. As these do not relate to the station ID in any way, we rename these

columns as appropriate using the data in locs.

names(Tmax) <- locs$id

The other data can be loaded in a similar way to Tmax; we denote the resulting variables as

Tmin, TDP, and Precip, respectively. One can, and should, use the functions head and

tail to check that the loaded data are sensible.

Consider now the maximum-temperature data in the NOAA data set. Since each row in

Tmax is associated with a time point, we can attach it columnwise to the data frame Times

using cbind.

Tmax <- cbind(Times, Tmax)

head(names(Tmax), 10)

## [1] "julian" "year" "month" "day" "3804" "3809"

## [7] "3810" "3811" "3812" "3813"

Now Tmax contains the time information in the first four columns and temperature data

in the other columns. To put Tmax into long format we need to identify a key–value pair.

In our case, the data are in space-wide format where the keys are the station IDs and the

values are the maximum temperatures (which we store in a field named z). The function we

use to put the data frame into long format is gather. This function takes the data as first

argument, the key–value pair, and then the next arguments are the names of any columns to

exclude as values (in this case those relating to the time stamp).

Tmax_long <- gather(Tmax, id, z, -julian, -year, -month, -day)

head(Tmax_long)

## julian year month day id z

## 1 726834 1990 1 1 3804 35

## 2 726835 1990 1 2 3804 42

## 3 726836 1990 1 3 3804 49

## 4 726837 1990 1 4 3804 59
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## 5 726838 1990 1 5 3804 41

## 6 726839 1990 1 6 3804 45

Note how gather has helped us achieve our goal: we now have a single row per measure-

ment and multiple rows may be associated with the same time point. As is, the column id

is of class character since it was extracted from the column names. Since the station ID

is an integer it is more natural to ensure the field is of class integer.

Tmax_long$id <- as.integer(Tmax_long$id)

There is little use to keep missing data (coded as −9999 in our case) when the data are

in long format. To filter out these data we can use the function filter. Frequently it is

better to use an inequality criterion (e.g., less than) when filtering in this way rather than an

equivalence criterion (is equal to) due to truncation error when storing data. This is what

we do below, and filter out data with values less than −9998 rather than data with values

equal to −9999. This is particularly important when processing the other variables, such as

preciptation, where the missing value is −99.989998.

nrow(Tmax_long)

## [1] 479208

Tmax_long <- filter(Tmax_long, !(z <= -9998))

nrow(Tmax_long)

## [1] 196253

Note how the number of rows in our data set (returned from the function nrow) has now

decreased by more than half. One may also use the R function subset; however, filter

tends to be faster for large data sets. Both subset and filter take a logical expression

as instruction on how to filter out unwanted rows. As with gather, the column names in

the logical expression do not appear as strings. In R this method of providing arguments is

known as non-standard evaluation, and we shall see several instances of it in the course of

the Labs.

Now assume we wish to include minimum temperature and the other variables inside

this data frame too. The first thing we need to do is first make sure every measurement z is

attributed to a process. In our case, we need to add a column, say proc, indicating what

process the measurement relates to. There are a few ways in which to add a column to a

data frame; here we shall introduce the function mutate, which will facilitate operations

in the following Labs.
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Tmax_long <- mutate(Tmax_long, proc = "Tmax")

head(Tmax_long)

## julian year month day id z proc

## 1 726834 1990 1 1 3804 35 Tmax

## 2 726835 1990 1 2 3804 42 Tmax

## 3 726836 1990 1 3 3804 49 Tmax

## 4 726837 1990 1 4 3804 59 Tmax

## 5 726838 1990 1 5 3804 41 Tmax

## 6 726839 1990 1 6 3804 45 Tmax

Now repeat the same procedure with the other variables to obtain data frames Tmin_long,

TDP_long, and Precip_long (remember the different codings for the missing values!).

To save time, the resulting data frames can also be loaded directly from STRbook as fol-

lows.

data(Tmin_long, package = "STRbook")

data(TDP_long, package = "STRbook")

data(Precip_long, package = "STRbook")

We can now construct our final data frame in long format by simply concatenating all

these (rowwise) together using the function rbind.

NOAA_df_1990 <- rbind(Tmax_long, Tmin_long, TDP_long, Precip_long)

There are many advantages of having data in long form. For example, it makes grouping

and summarizing particularly easy. Let us say we want to find the mean value for each

variable in each year. We do this using the functions group_by and summarise. The

function group_by creates a grouped data frame, while summarise does an operation

on each group within the grouped data frame.

summ <- group_by(NOAA_df_1990, year, proc) %>% # groupings

summarise(mean_proc = mean(z)) # operation

Alternatively, we may wish to find out the number of days on which it did not rain at

each station in June of every year. We can first filter out the other variables and then use

summarise.

NOAA_precip <- filter(NOAA_df_1990, proc == "Precip" & month == 6)

summ <- group_by(NOAA_precip, year, id) %>%

summarise(days_no_precip = sum(z == 0))

head(summ)
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## # A tibble: 6 x 3

## # Groups: year [1]

## year id days_no_precip

## <int> <int> <int>

## 1 1990 3804 19

## 2 1990 3810 26

## 3 1990 3811 21

## 4 1990 3812 24

## 5 1990 3813 25

## 6 1990 3816 23

The median number of days with no recorded precipitation was

median(summ$days_no_precip)

## [1] 20

In the R code above, we have used the operator %>%, known as the pipe operator. This

operator has its own nuances and should be used with care, but we find it provides a clear

desciption of the processing pipeline a data set is passed through. We shall always use

this operator as x %>% f(y), which is shorthand for f(x,y). For example, the June

summaries above can be found equivalently using the commands

grps <- group_by(NOAA_precip, year, id)

summ <- summarise(grps, days_no_precip = sum(z == 0))

There are other useful commands in dplyr that we use in other Labs. First, the function

arrange sorts by a column. For example, NOAA_df_1990 is sorted first by station ID,

and then by time (Julian date). The following code sorts the data first by time and then by

station ID.

NOAA_df_sorted <- arrange(NOAA_df_1990, julian, id)

Calling head(NOAA_df_sorted) reveals that no measurements on temperature dew

point are available for the first few days of the data set.

Another useful function is select, which can be used to select or discard columns.

For example, in the following, df1 selects only the Julian date and the measurement while

df2 contains all columns except the Julian date.

df1 <- select(NOAA_df_1990, julian, z)

df2 <- select(NOAA_df_1990, -julian)

At present, our long data frame contains no spatial information attached to it. However,

for each station ID we have an associated coordinate in the data frame locs. We can merge
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locs to NOAA_df_1990 using the function left_join; this is considerably faster than

the function merge. With left_joinwe need to supply the column field name by which

we are merging. In our case, the field common to both data sets is "id".

NOAA_df_1990 <- left_join(NOAA_df_1990, locs, by = "id")

Finally, it may be the case that one wishes to revert from long format to either space-

wide or time-wide format. The reverse function of gather is spread. This also works

by identifying the key–value pair in the data frame; the values are then “widened” into a

table while the keys are used to label the columns. For example, the code below constructs

a space-wide data frame of maximum temperatures, with each row denoting a different date

and each column containing data z from a specific station id.

Tmax_long_sel <- select(Tmax_long, julian, id, z)

Tmax_wide <- spread(Tmax_long_sel, id, z)

dim(Tmax_wide)

## [1] 1461 138

The first column is the Julian date. Should one wish to construct a standard matrix contain-

ing these data, then one can simply drop this column and convert as follows.

M <- select(Tmax_wide, -julian) %>% as.matrix()

Working with Spatio-Temporal Data Classes

Next, we convert the data into objects of class STIDF and STFDF; in these class names

“DF” is short for “data frame,” which indicates that in addition to the spatio-temporal loca-

tions (which only need STI or STF objects), the objects will also contain data. These

classes are defined in the package spacetime. Since sometimes we construct spatio-

temporal objects using spatial objects we also need to load the package sp. For details

on these classes see Pebesma (2012).

library("sp")

library("spacetime")

Constructing an STIDF Object

The spatio-temporal object for irregular data, STIDF, can be constructed using two

functions: stConstruct and STIDF. Let us focus on the maximum temperature in

Tmax_long. The only thing we need to do before we call stConstruct is to de-

fine a formal time stamp from the year,month,day fields. First, we construct a field
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with the date in year–month–day format using the function paste, which concatenates

strings together. Instead of typing NOAA_df_1990$year, NOAA_df_1990$month

and NOAA_df_1990$day we embed the paste function within the function with to

reduce code length.

NOAA_df_1990$date <- with(NOAA_df_1990,

paste(year, month, day, sep = "-"))

head(NOAA_df_1990$date, 4) # show first four elements

## [1] "1990-1-1" "1990-1-2" "1990-1-3" "1990-1-4"

The field date is of type character. This field can now be converted into a Date object

using as.Date.

NOAA_df_1990$date <- as.Date(NOAA_df_1990$date)

class(NOAA_df_1990$date)

## [1] "Date"

Now we have everything in place to construct the spatio-temporal object of class STIDF

for maximum temperature. The easiest way to do this is using stConstruct, in which

we provide the data frame in long format and indicate which are the spatial and temporal

coordinates. This is the bare minimum required for constructing a spatio-temporal data set.

Tmax_long2 <- filter(NOAA_df_1990, proc == "Tmax")

STObj <- stConstruct(x = Tmax_long2, # data set

space = c("lon", "lat"), # spatial fields

time = "date") # time field

class(STObj)

## [1] "STIDF"

## attr(,"package")

## [1] "spacetime"

The function class can be used to confirm we have successfully generated an object

of class STIDF. There are several other options that can be used with stConstruct.

For example, one can set the coordinate reference system or specify whether the time field

indicates an instance or an interval. Type help(stConstruct) into the R console for

more details.

The function STIDF is slightly different from stConstruct as it requires one to also

specify the spatial part as an object of class Spatial from the package sp. In our case,

the spatial component is simply an object containing irregularly spaced data, which in the

package sp is a SpatialPoints object. A SpatialPoints object may be constructed

using the function SpatialPoints and by supplying the coordinates as arguments. As
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with stConstruct, several other arguments can also be supplied to SpatialPoints;

see the help file of SpatialPoints for more details.

spat_part <- SpatialPoints(coords = Tmax_long2[, c("lon", "lat")])

temp_part <- Tmax_long2$date

STObj2 <- STIDF(sp = spat_part,

time = temp_part,

data = select(Tmax_long2, -date, -lon, -lat))

class(STObj2)

## [1] "STIDF"

## attr(,"package")

## [1] "spacetime"

Constructing an STFDF Object

A similar approach can be used to construct an STFDF object instead of an STIDF object.

When the spatial points are fixed in time, we only need to provide as many spatial coord-

inates as there are spatial points, in this case those of the station locations. We also need to

provide the regular time stamps, that is, one for each day between 01 January 1990 and 30

December 1993. Finally, the data can be provided both in space-wide or time-wide format

with stConstruct, and in long format with STFDF. Here we show how to use STFDF.
The spatial and temporal parts can be obtained from the original data as follows.

spat_part <- SpatialPoints(coords = locs[, c("lon", "lat")])

temp_part <- with(Times,

paste(year, month, day, sep = "-"))

temp_part <- as.Date(temp_part)

The data need to be provided in long format, but now they must contain all the missing

values too since a data point must be provided for every spatial and temporal combination.

To get the data into long format we use gather.

Tmax_long3 <- gather(Tmax, id, z, -julian, -year, -month, -day)

It is very important that the data frame in long format supplied to STFDF has the spatial

index moving faster than the temporal index, and that the order of the spatial index is the

same as that of the spatial component supplied.

Tmax_long3$id <- as.integer(Tmax_long3$id)

Tmax_long3 <- arrange(Tmax_long3,julian,id)

Confirming that the spatial ordering in Tmax_long3 is the correct one can be done as

follows.
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all(unique(Tmax_long3$id) == locs$id)

## [1] TRUE

We are now ready to construct the STFDF.

STObj3 <- STFDF(sp = spat_part,

time = temp_part,

data = Tmax_long3)

class(STObj3)

## [1] "STFDF"

## attr(,"package")

## [1] "spacetime"

Since we will be using STObj3 often in the Labs we further equip it with a coordinate

reference system (see Bivand et al., 2013, for details on these reference systems),

proj4string(STObj3) <- CRS("+proj=longlat +ellps=WGS84")

and replace the missing values (currently coded as −9999) with NAs.

STObj3$z[STObj3$z == -9999] <- NA

For ease of access, this object is saved as a data file in STRbook and can be loaded

using the command data("STObj3", package = "STRbook").

Lab 2.2: Visualization

In this Lab we shall visualize maximum temperature data in the NOAA data set. Specif-

ically, we consider the maximum recorded temperature between May 1993 and September

1993 (inclusive). The packages we need are animation, dplyr, ggplot2, gstat, maps, and

STRbook.

library("animation")

library("dplyr")

library("ggplot2")

library("gstat")

library("maps")

library("STRbook")

In order to ensure consistency of results and visualizations we fix the seed to 1.

Wikle, C. K., Zammit-Mangion, A., and Cressie, N. (2019), Spatio-Temporal Statistics with R, Boca Raton,

FL: Chapman & Hall/CRC. © 2019 Wikle, Zammit-Mangion, Cressie. https://spacetimewithr.org



Lab 2.2: Visualization 61

set.seed(1)

We now load the data set and take a subset of it using the function filter.

data("NOAA_df_1990", package = "STRbook")

Tmax <- filter(NOAA_df_1990, # subset the data

proc == "Tmax" & # only max temperature

month %in% 5:9 & # May to September

year == 1993) # year of 1993

The data frame we shall work with is hence denoted by Tmax. The first six records in Tmax
are:

Tmax %>% select(lon, lat, date, julian, z) %>% head()

## lon lat date julian z

## 1 -81.43333 39.35 1993-05-01 728050 82

## 2 -81.43333 39.35 1993-05-02 728051 84

## 3 -81.43333 39.35 1993-05-03 728052 79

## 4 -81.43333 39.35 1993-05-04 728053 72

## 5 -81.43333 39.35 1993-05-05 728054 73

## 6 -81.43333 39.35 1993-05-06 728055 78

The first record has a Julian date of 728050, corresponding to 01 May 1993. To ease the

following operations, we create a new variable t that is equal to 1 when julian ==

728050 and increases by 1 for each day in the record.

Tmax$t <- Tmax$julian - 728049 # create a new time variable

The first task faced by the spatio-temporal modeler is data visualization. This is an

important preliminary task that needs to be carried out prior to the exploratory-data-analysis

stage and the modeling stages. Throughout, we shall make extensive use of the grammar of

graphics package ggplot2, which is a convenient way to plot and visualize data and results

in R. The book by Wickham (2016) provides a comprehensive introduction to ggplot2.

Spatial Plots

Visualization techniques vary with the data being analyzed. The NOAA data are collected

at stations that are fixed in space; therefore, initial plots should give the modeler an idea of

the overall spatial variation of the observed data. If there are many time points, usually only

a selection of time points are chosen for visualization. In this case we choose three time

points.
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Tmax_1 <- subset(Tmax, t %in% c(1, 15, 30)) # extract data

The variable Tmax_1 contains the data associated with the first, fifteenth, and thirtieth day

in Tmax. We now plot this data subset using ggplot2. Note that the function col_scale,

below, is simply a wrapper for the ggplot2 function scale_colour_distiller, and

is provided with STRbook.

NOAA_plot <- ggplot(Tmax_1) + # plot points

geom_point(aes(x = lon,y = lat, # lon and lat

colour = z), # attribute color

size = 2) + # make all points larger

col_scale(name = "degF") + # attach color scale

xlab("Longitude (deg)") + # x-axis label

ylab("Latitude (deg)") + # y-axis label

geom_path(data = map_data("state"), # add US states map

aes(x = long, y = lat, group = group)) +

facet_grid(~date) + # facet by time

coord_fixed(xlim = c(-105, -75),

ylim = c(25, 50)) + # zoom in

theme_bw() # B&W theme

NOAA_plot is a plot of the spatial locations of the stations. The function aes (short for

aesthetics) for geom_point identifies which field in the data frame Tmax_1 is the x-

coordinate and which is the y-coordinate. ggplot2 also allows one to attribute color (and

size, if desired) to other fields in a similar fashion. The command print(NOAA_plot)

generates the figure shown in Figure 2.1. As can be seen, the stations are approximately

regularly spaced within the domain.

When working with geographic data, it is also good practice to put the spatial loca-

tions of the data into perspective, by plotting country or state boundaries together with

the data locations. Above, the US state boundaries are obtained from the maps package

through the command map_data("state"). The boundaries are then overlayed on the

plot using geom_path, which simply joins the points and draws the resulting path with x

against y. Projections can be applied by adding another layer to the ggplot2 object using

coord_map. For example adding + coord_map(projection = "sinusoidal")

will plot using a sinusoidal projection. One can also plot in three dimensions by using

projection = "ortho".

In this example we have used ggplot2 to plot point-referenced data. Plots of regular lat-

tice data, such as those shown in Figure 2.2, are generated similarly by using geom_tile

instead. Plots of irregular lattice data are generated using geom_polygon. As an example

of the latter, consider the BEA income data set. These data can be loaded from STRbook

as follows.
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data("BEA", package = "STRbook")

head(BEA %>% select(-Description), 3)

## NAME10 X1970 X1980 X1990

## 6 Adair, MO 2723 7399 12755

## 9 Andrew, MO 3577 7937 15059

## 12 Atchison, MO 3770 5743 14748

From the first three records, we can see that the data set contains the personal income, in

dollars, by county and by year for the years 1970, 1980 and 1990. These data need to

be merged with Missouri county data which contain geospatial information. These county

data, which are also available in STRbook, were originally processed from a shapefile that

was freely available online.6

data("MOcounties", package = "STRbook")

head(MOcounties %>% select(long, lat, NAME10), 3)

## long lat NAME10

## 1 627911.9 4473554 Clark, MO

## 2 627921.4 4473559 Clark, MO

## 3 627923.0 4473560 Clark, MO

The data set contains the boundary points for the counties, amongst several other variables

which we do not explore here. For example, to plot the boundary of the first county one can

simply type

County1 <- filter(MOcounties, NAME10 == "Clark, MO")

plot(County1$long, County1$lat)

To add the BEA income data to the county data containing geospatial information we

use left_join.

MOcounties <- left_join(MOcounties, BEA, by = "NAME10")

Now it is just a matter of calling ggplot with geom_polygon to display the BEA

income data as spatial polygons. We also use geom_path to draw the county boundaries.

Below we show the code for 1970; similar code would be needed for 1980 and 1990. Note

the use of the group argument to identify which points correspond to which county. The

resulting plots are shown in Figure 2.4.

6http://msdis-archive.missouri.edu/archive/metadata_gos/MO_2010_TIGER_

Census_County_Boundaries.xml
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g1 <- ggplot(MOcounties) +

geom_polygon(aes(x = long, y = lat, # county boundary

group = NAME10, # county group

fill = log(X1970))) + # log of income

geom_path(aes(x = long, y = lat, # county boundary

group = NAME10)) + # county group

fill_scale(limits = c(7.5,10.2),

name = "log($)") +

coord_fixed() + ggtitle("1970") + # annotations

xlab("x (m)") + ylab("y (m)") + theme_bw()

Type print(g1) in the R console to display the plot.

Time-Series Plots

Next, we look at the time series associated with the maximum temperature data in the

NOAA data set. One can plot the time series at all 139 weather stations (and this is recom-

mended); here we look at the time series at a set of stations selected at random. We first

obtain the set of unique station identifiers, choose 10 at random from these, and extract the

data associated with these 10 stations from the data set.

UIDs <- unique(Tmax$id) # extract IDs

UIDs_sub <- sample(UIDs, 10) # sample 10 IDs

Tmax_sub <- filter(Tmax, id %in% UIDs_sub) # subset data

To visualize the time series at these stations, we use facets. When given a long data

frame, one can first subdivide the data frame into groups and generate a plot for each

group. The following code displays the time series at each station. The command we use

is facet_wrap, which automatically adjusts the number of rows and columns in which

to display the facets. The command facet_grid instead uses columns for one grouping

variable and rows for a second grouping variable, if specified.

TmaxTS <- ggplot(Tmax_sub) +

geom_line(aes(x = t, y = z)) + # line plot of z against t

facet_wrap(~id, ncol = 5) + # facet by station

xlab("Day number (days)") + # x label

ylab("Tmax (degF)") + # y label

theme_bw() + # BW theme

theme(panel.spacing = unit(1, "lines")) # facet spacing

The argument ~id supplied to facet_wrap is a formula in R. In this case, the

formula is used to denote the groups by which we are faceting. The syntax x~y can be used

to facet by two variables. The command print(TmaxTS) produces Figure 2.9.
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Hovmöller Plots

A Hovmöller plot is a two-dimensional space-time visualization, where space is collapsed

(projected or averaged) onto one dimension; the second dimension then denotes time. A

Hovmöller plot can be generated relatively easily if the data are on a space-time grid, but

unfortunately this is rarely the case! This is where data-wrangling techniques such as those

explored in Lab 2.1 come in handy.

Consider the latitudinal Hovmöller plot. The first step is to generate a regular grid of,

say, 25 spatial points and 100 temporal points using the function expand.grid, with

limits set to the latitudinal and temporal limits available in the data set.

lim_lat <- range(Tmax$lat) # latitude range

lim_t <- range(Tmax$t) # time range

lat_axis <- seq(lim_lat[1], # latitude axis

lim_lat[2],

length=25)

t_axis <- seq(lim_t[1], # time axis

lim_t[2],

length=100)

lat_t_grid <- expand.grid(lat = lat_axis,

t = t_axis)

We next need to associate each station’s latitudinal coordinate with the closest one on

the grid. This can be done by finding the distance from the station’s latitudinal coordinate

to each point of the grid, finding which gridpoint is the closest, and allocating that to it. We

store the gridded data in Tmax_grid.

Tmax_grid <- Tmax

dists <- abs(outer(Tmax$lat, lat_axis, "-"))

Tmax_grid$lat <- lat_axis[apply(dists, 1, which.min)]

Now that we have associated each station with a latitudinal coordinate, all that is left is

to group by latitude and time, and then we average all station values falling in the latitude–

time bands.

Tmax_lat_Hov <- group_by(Tmax_grid, lat, t) %>%

summarise(z = mean(z))

In this case, every latitude–time band contains at least one data point, so that the Hov-

möller plot contains no missing points on the established grid. This may not always be the

case, and simple interpolation methods, such as interp from the akima package, can be

used to fill out grid cells with no data.

Plotting gridded data is facilitated using the ggplot2 function geom_tile. The func-

tion geom_tile is similar to geom_point, except that it assumes regularly spaced
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data and automatically uses rectangular patches in the plot. Since rectangular patches are

“filled,” we use the STRbook function fill_scale instead of col_scale, which takes

the legend title in the argument name.

Hovmoller_lat <- ggplot(Tmax_lat_Hov) + # take data

geom_tile(aes(x = lat, y = t, fill = z)) + # plot

fill_scale(name = "degF") + # add color scale

scale_y_reverse() + # rev y scale

ylab("Day number (days)") + # add y label

xlab("Latitude (degrees)") + # add x label

theme_bw() # change theme

The function scale_y_reverse ensures that time increases from top to bottom, as

is typical in Hovmöller plots. We can generate a longitude-based Hovmöller plot in the

same way. The resulting Hovmöller plots are shown in Figure 2.11.

Animations

To generate an animation in R, one can use the package animation. First, we define a

function that plots a spatial map of the maximum temperature as a function of time:

Tmax_t <- function(tau) {

Tmax_sub <- filter(Tmax, t == tau) # subset data

ggplot(Tmax_sub) +

geom_point(aes(x = lon,y = lat, colour = z), # plot

size = 4) + # pt. size

col_scale(name = "z", limits = c(40, 110)) +

theme_bw() # B&W theme

}

The function above takes a day number tau, filters the data frame according to the day

number, and then plots the maximum temperature at the stations as a spatial map.

Next, we construct a function that plots the data for every day in the data set. The

function that generates the animation within an HTML webpage is saveHTML. This takes

the function that plots the sequence of images and embeds them in a webpage (by default

named index.html) using JavaScript. The function saveHTML takes many arguments;

type the command

help(saveHTML)

in the R console for more details.
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gen_anim <- function() {

for(t in lim_t[1]:lim_t[2]){ # for each time point

plot(Tmax_t(t)) # plot data at this time point

}

}

ani.options(interval = 0.2) # 0.2s interval between frames

saveHTML(gen_anim(), # run the main function

autoplay = FALSE, # do not play on load

loop = FALSE, # do not loop

verbose = FALSE, # no verbose

outdir = ".", # save to current dir

single.opts = "'controls': ['first', 'previous',

'play', 'next', 'last',

'loop', 'speed'],

'delayMin': 0",

htmlfile = "NOAA_anim.html") # save filename

To view the animation, load NOAA_anim.html from your working directory. The

animation reveals dynamics within the spatio-temporal data that are not apparent using

other visualization methods. For example, the maximum temperature clearly drifts from

west to east at several points during the animation. This suggests that a dynamic spatio-

temporal model that can capture this drift could provide a good fit to these data.

Lab 2.3: Exploratory Data Analysis

In this Lab we carry out exploratory data analysis (EDA), which typically requires visu-

alization techniques similar to those utilized in Lab 2.2. There are several ways in which

to carry out EDA with spatio-temporal data; in this Lab we consider the construction and

visualization of the empirical means and covariances, the use of empirical orthogonal func-

tions and their associated principal component time series, semivariogram analysis, and

spatio-temporal canonical correlation analysis.

For the first part of the Lab, as in Lab 2.2, we shall consider the daily maximum tem-

peratures in the NOAA data set between May 1993 and September 1993 (inclusive). The

packages we need are CCA, dplyr, ggplot2, gstat, sp, spacetime, STRbook and tidyr.

library("CCA")

library("dplyr")

library("ggplot2")

library("gstat")

library("sp")

library("spacetime")

library("STRbook")

Wikle, C. K., Zammit-Mangion, A., and Cressie, N. (2019), Spatio-Temporal Statistics with R, Boca Raton,

FL: Chapman & Hall/CRC. © 2019 Wikle, Zammit-Mangion, Cressie. https://spacetimewithr.org



68 Exploring Spatio-Temporal Data

library("tidyr")

In order to ensure consistency of results and visualizations, we fix the seed to 1.

set.seed(1)

We now load the NOAA data set using the data command. To keep the data size

manageable, we take a subset of it corresponding to the maximum daily temperatures in the

months May–September 1993. As in Lab 2.2 we also add a new variable t which starts at

1 at the beginning of the data set and increases by 1 each day.

data("NOAA_df_1990", package = "STRbook")

Tmax <- filter(NOAA_df_1990, # subset the data

proc == "Tmax" & # only max temperature

month %in% 5:9 & # May to September

year == 1993) # year of 1993

Tmax$t <- Tmax$julian - 728049 # create a new time variable

Empirical Spatial Means

The empirical spatial mean of our data is given by (2.1). The empirical spatial mean is a

spatial quantity that can be stored in a new data frame that contains the spatial locations

and the respective average maximum temperature at each location. These, and other data

manipulations to follow, can be carried out easily using the tools we learned in Lab 2.1. We

group by longitude and latitude, and then we compute the average maximum temperature

at each of the separate longitude–latitude coordinates.

spat_av <- group_by(Tmax, lat, lon) %>% # group by lon-lat

summarise(mu_emp = mean(z)) # mean for each lon-lat

We can now plot the average maximum temperature per station and see how this varies

according to longitude and latitude. The following plots are shown in Figure 2.14.

lat_means <- ggplot(spat_av) +

geom_point(aes(lat, mu_emp)) +

xlab("Latitude (deg)") +

ylab("Maximum temperature (degF)") + theme_bw()

lon_means <- ggplot(spat_av) +

geom_point(aes(lon, mu_emp)) +

xlab("Longitude (deg)") +

ylab("Maximum temperature (degF)") + theme_bw()
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Empirical Temporal Means

We now generate the plot of Figure 2.15. The empirical temporal mean can be computed

easily using the tools we learned in Lab 2.1: first, group the data by time; and second,

summarize using the summarise function.

Tmax_av <- group_by(Tmax, date) %>%

summarise(meanTmax = mean(z))

The variable Tmax_av is a data frame containing the average maximum temperature

on each day (averaged across all the stations). This can be visualized easily, together with

the original raw data, using ggplot2.

gTmaxav <-

ggplot() +

geom_line(data = Tmax,aes(x = date, y = z, group = id),

colour = "blue", alpha = 0.04) +

geom_line(data = Tmax_av, aes(x = date, y = meanTmax)) +

xlab("Month") + ylab("Maximum temperature (degF)") +

theme_bw()

Empirical Covariances

Before obtaining the empirical covariances, it is important that all trends are removed (not

just the intercept). One simple way to do this is to first fit a linear model (that has spatial

and/or temporal covariates) to the data. Then plot the empirical covariances of the detrended

data (i.e., the residuals). Linear-model fitting proceeds with use of the lm function in R.

The residuals from lm can then be incorporated into the original data frame Tmax.

In the plots of Figure 2.9 we observed a quadratic tendency of temperature over the cho-

sen time span. Therefore, in what follows, we consider time and time squared as covariates.

Note the use of the function I. This is required for R to interpret the power sign “ˆ” as an

arithmetic operator instead of a formula operator.

lm1 <- lm(z ~ lat + t + I(t^2), data = Tmax) # fit a linear model

Tmax$residuals <- residuals(lm1) # store the residuals

We also need to consider the spatial locations of the stations, which we extract from Tmax

used above.

spat_df <- filter(Tmax, t == 1) %>% # lon/lat coords of stations

select(lon, lat) %>% # select lon/lat only

arrange(lon, lat) # sort ascending by lon/lat

m <- nrow(spat_av) # number of stations
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The most straightforward way to compute the empirical covariance matrix (2.4) is using

the cov function in R. When there are missing data, the usual way forward is to drop all

records that are not complete (provided there are not too many of these). Specifically, if

any of the elements in Ztj or Ztj−τ are missing, the associated term in the summation of

(2.4) is ignored altogether. The function cov implements this when the argument use =

'complete.obs' is supplied. If there are too many records that are incomplete, impu-

tation, or the consideration of only subsets of stations, might be required.

In order to compute the empirical covariance matrices, we first need to put the data into

space-wide format using spread.

X <- select(Tmax, lon, lat, residuals, t) %>% # select columns

spread(t, residuals) %>% # make time-wide

select(-lon, -lat) %>% # drop coord info

t() # make space-wide

Now it is simply a matter of calling cov(X, use = 'complete.obs') for comput-

ing the lag-0 empirical covariance matrix. For the lag-1 empirical covariance matrix we

compute the covariance between the residuals from X excluding the first time point and X

excluding the last time point.

Lag0_cov <- cov(X, use = 'complete.obs')

Lag1_cov <- cov(X[-1, ], X[-nrow(X),], use = 'complete.obs')

In practice, it is very hard to gain any intuition from these matrices, since points in

a two-dimensional space do not have any specific ordering. One can, for example, order

the stations by longitude and then plot the permuted spatial covariance matrix, but this

works best when the domain of interest is rectangular with a longitude span that is much

larger than the latitude span. In our case, with a roughly square domain, a workaround

is to split the domain into either latitudinal or longitudinal strips, and then plot the spatial

covariance matrix associated with each strip. In the following, we split the domain into four

longitudinal strips (similar code can be used to generate latitudinal strips).

spat_df$n <- 1:nrow(spat_df) # assign an index to each station

lim_lon <- range(spat_df$lon) # range of lon coordinates

lon_strips <- seq(lim_lon[1], # create 4 long. strip boundaries

lim_lon[2],

length = 5)

spat_df$lon_strip <- cut(spat_df$lon, # bin the lon into

lon_strips, # their respective bins

labels = FALSE, # don't assign labels

include.lowest = TRUE) # include edges

The first six records of spat_df are:
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head(spat_df) # print the first 6 records of spat_df

## lon lat n lon_strip

## 1 -99.96667 37.76667 1 1

## 2 -99.76667 36.30000 2 1

## 3 -99.68333 32.43333 3 1

## 4 -99.05000 35.00000 4 1

## 5 -98.81667 38.86666 5 1

## 6 -98.51667 33.98333 6 1

Now that we know in which strip each station falls, we can subset the station data

frame by strip and then sort the subsetted data frame by latitude. In STRbook we provide

a function plot_cov_strips that takes an empirical covariance matrix C and a data

frame in the same format as spat_df, and then plots the covariance matrix associated

with each longitudinal strip. Plotting requires the package fields. We can plot the resulting

lag-0 and lag-1 covariance matrices using the following code.

plot_cov_strips(Lag0_cov, spat_df) # plot the lag-0 matrices

plot_cov_strips(Lag1_cov, spat_df) # plot the lag-1 matrices

As expected (see Figure 2.16), the empirical spatial covariance matrices reveal the pres-

ence of spatial correlation in the residuals. The four lag-0 plots seem to be qualitatively

similar, suggesting that there is no strong dependence on longitude. However, there is a

dependence on latitude, and the spatial covariance appears to decrease with decreasing lat-

itude. This dependence is a type of spatial non-stationarity, and such plots can be used to

assess whether non-stationary spatio-temporal models are required or not.

Similar code can be used to generate spatial correlation (instead of covariance) image

plots.

Semivariogram Analysis

From now on, in order to simplify computations, we will use a subset of the data containing

only observations in July. Computing the empirical semivariogram is much faster when

using objects of class STFDF rather than STIDF since the regular space-time structure can

be exploited. We hence take STObj3 computed in Lab 2.1 (load using data(STObj3))

and subset the month of July 1993 as follows.

data("STObj3", package = "STRbook")

STObj4 <- STObj3[, "1993-07-01::1993-07-31"]

For computing the sample semivariogram we use the function variogram.7 We bin the

distances between measurement locations into bins of size 60 km, and consider at most six

time lags.

7Although the function is named “variogram,” it is in fact the sample semivariogram that is computed.
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vv <- variogram(object = z~1 + lat, # fixed effect component

data = STObj4, # July data

width = 80, # spatial bin (80 km)

cutoff = 1000, # consider pts < 1000 km apart

tlags = 0.01:6.01) # 0 days to 6 days

The command plot(vv) produces Figure 2.17. The plot suggests that there are consid-

erable spatio-temporal correlations in the data; spatio-temporal modeling of the residuals is

thus warranted.

Empirical Orthogonal Functions

Empirical orthogonal functions (EOFs) can reveal spatial structure in the data and can also

be used for subsequent dimensionality reduction. EOFs can be obtained from the data

through either a spectral decomposition of the covariance matrix or a singular value de-

composition (SVD) of the detrended space-time data matrix. The data matrix has to be in

space-wide format (i.e., where space varies along the columns and time varies along the

rows).

For this part of the Lab we use the SST data set. The SST data set does not contain any

missing values, which renders our task slightly easier than when data are missing. When

data are missing, one typically needs to consider interpolation, median polishing, or other

imputation methods to fill in the missing values prior to computing the EOFs.

First we load the sea-land mask, the lon-lat coordinates of the SST grid, and the SST

data set itself which is in time-wide format.

data("SSTlandmask", package = "STRbook")

data("SSTlonlat", package = "STRbook")

data("SSTdata", package = "STRbook")

Since SSTdata contains readings over land,8 we delete these using SSTlandmask. Fur-

ther, in order to consider whole years only, we take the first 396 months (33 years) of the

data, containing SST values spanning 1970–2002.

delete_rows <- which(SSTlandmask == 1)

SSTdata <- SSTdata[-delete_rows, 1:396]

From (2.10) recall that prior to carrying out an SVD, we need to put the data set into space-

wide format, mean-correct it, and then standardize it. Since SSTdata is in time-wide

format, we first transpose it to make it space-wide.

8The land SST data are “pseudo-data,” and just there to help analysts re-grid the SST data to different

resolutions.
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## Put data into space-wide form

Z <- t(SSTdata)

dim(Z)

## [1] 396 2261

Note that Z is of size 396 × 2261, and it is hence in space-wide format as required. Equation

(2.10) is implemented as follows.

## First find the matrix we need to subtract:

spat_mean <- apply(SSTdata, 1, mean)

nT <- ncol(SSTdata)

## Then subtract and standardize:

Zspat_detrend <- Z - outer(rep(1, nT), spat_mean)

Zt <- 1/sqrt(nT - 1)*Zspat_detrend

Finally, to carry out the SVD we run

E <- svd(Zt)

The SVD returns a list E containing the matrices V, U, and the singular values

diag(D). The matrix V contains the EOFs in space-wide format. We change the column

names of this matrix, and append the lon-lat coordinates to it as follows.

V <- E$v

colnames(E$v) <- paste0("EOF", 1:ncol(SSTdata)) # label columns

EOFs <- cbind(SSTlonlat[-delete_rows, ], E$v)

head(EOFs[, 1:6])

## lon lat EOF1 EOF2 EOF3 EOF4

## 16 154 -29 -0.004915064 -0.012129566 -0.02882162 8.540892e-05

## 17 156 -29 -0.001412275 -0.002276177 -0.02552841 6.726077e-03

## 18 158 -29 0.000245909 0.002298082 -0.01933020 8.591251e-03

## 19 160 -29 0.001454972 0.002303585 -0.01905901 1.025538e-02

## 20 162 -29 0.002265778 0.001643138 -0.02251571 1.125295e-02

## 21 164 -29 0.003598762 0.003910823 -0.02311128 1.002285e-02

The matrix U returned from svd contains the principal component time series in wide-

table format (i.e., each column corresponds to a time series associated with an EOF). Here

we use the function gather in the package tidyr that reverses the operation spread. That

is, the function takes a spatio-temporal data set in wide-table format and puts it into long-

table format. We instruct the function to gather every column except the column denoting

time, and we assign the key–value pair EOF-PC:
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TS <- data.frame(E$u) %>% # convert U to data frame

mutate(t = 1:nrow(E$u)) %>% # add a time field

gather(EOF, PC, -t) # put columns (except time)

# into long-table format with

# EOF-PC as key-value pair

Finally, the normalized time series are given by:

TS$nPC <- TS$PC * sqrt(nT-1)

We now can use the visualization tools discussed earlier to visualize the EOFs and the

(normalized) principal component time series during July 2003. In Figures 2.20 and 2.21,

we show the first three EOFs and the first three principal component time series. We can

use the following code to illustrate the first EOF:

ggplot(EOFs) + geom_tile(aes(x = lon, y = lat, fill = EOF1)) +

fill_scale(name = "degC") + theme_bw() +

xlab("Longitude (deg)") + ylab("Latitude (deg)")

Plotting of other EOFs and principal component time series is left as an excercise to the

reader. The EOFs reveal interesting spatial structure in the residuals. The second EOF is a

west–east gradient, while the third EOF again reveals a temporally dependent north–south

gradient. This north–south gradient has a lower effect in the initial part of the time series,

and a higher effect towards the end.

EOFs can also be constructed by using eof in the package spacetime. With the latter,

one must cast the data into an STFDF object using the function stConstruct before

calling the function eof. The last example in the help file of stConstruct shows how

one can do this from a space-wide matrix. The function eof uses prcomp (short for

principal component analysis) to find the EOFs, which in turn uses svd.

Spatio-Temporal Canonical Correlation Analysis

We can carry out a canonical correlation analysis (CCA) using the package CCA in R. One

cannot implement CCA on the raw data since T < n. Instead we carry out CCA on the

SST projected onto EOF space, specifically the first 10 EOFs which explain just over 74%

of the variance of the signal (you can show this from the singular values in the object E). In

this example we consider the problem of long-lead prediction, and we check whether SST

is a useful predictor for SST in 7 months’ time. To this end, we split the data set into two

parts, one containing SST and another containing SST lagged by 7 months.

nEOF <- 10

EOFset1 <- E$u[1:(nT-7), 1:nEOF] * sqrt(nT - 1)

EOFset2 <- E$u[8:nT, 1:nEOF] * sqrt(nT - 1)
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The CCA is carried out by running the function cancor.

cc <- cancor(EOFset1, EOFset2) # compute CCA

options(digits = 3) # print to three d.p.

print(cc$cor[1:5]) # print

## [1] 0.843 0.758 0.649 0.584 0.463

print(cc$cor[6:10])

## [1] 0.4137 0.3067 0.2058 0.0700 0.0273

The returned quantity cc$cor provides the correlations between the canonical variates

of the unshifted and shifted SSTs in EOF space. The correlations decrease, as expected, but

the first two canonical variates are highly correlated. The time series of the first canonical

variables can be found by multiplying the EOF weights with the computed coefficients as

follows (see (2.13) and (2.14)).

CCA_df <- data.frame(t = 1:(nT - 7),

CCAvar1 = (EOFset1 %*% cc$xcoef[,1])[,1],

CCAvar2 = (EOFset2 %*% cc$ycoef[,1])[,1])

A plot can be made using standard ggplot2 commands.

t_breaks <- seq(1, nT, by = 60) # breaks for x-labels

year_breaks <- seq(1970,2002,by=5) # labels for x-axis

g <- ggplot(CCA_df) +

geom_line(aes(t, CCAvar1), col = "dark blue") +

geom_line(aes(t, CCAvar2), col = "dark red") +

scale_x_continuous(breaks = t_breaks, labels = year_breaks) +

ylab("CCA variables") + xlab("Year") + theme_bw()

The plot of the time series of the first canonical variables is shown in Figure 2.23. The

plot shows a high correlation between the first pair of canonical variables. What are these

canonical variables? They are simply a linear combination of the EOFs, where the linear

weights are given in cc$xcoef[,1] and cc$ycoef[,1], respectively.

EOFs_CCA <- EOFs[,1:4] # first two columns are lon-lat

EOFs_CCA[,3] <- c(as.matrix(EOFs[,3:12]) %*% cc$xcoef[,1])

EOFs_CCA[,4] <- c(as.matrix(EOFs[,3:12]) %*% cc$ycoef[,1])

Plotting of the weights as spatial maps is straightforward and left as an exercise. We plot

weights (recall these are just linear combination of EOFs) for the lagged SSTs and the

unlagged SSTs in Figure 2.24.
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Chapter 3

Spatio-Temporal Statistical Models

As you read this chapter and the next two, remind yourself that what you see in data may be

different than what you might expect to see. Your view might be obstructed and/or not in

sharp focus. Spatial predictive models can fill in the gaps and clear up your vision, but what

you see in the data is still a “guess” at what is really there. We use statistical prediction

methods that quantify these guesses with their associated prediction variances. Now, up the

ante – include time as well and try to forecast the future . . . even in places where there are

no current or past data! We show how this is possible in the pages that follow.

Spatio-temporal prediction based on spatio-temporal statistical modeling is a central

theme of this book. Importantly, our type of prediction comes with prediction variances

that quantify the uncertainty in the prediction. Predicting the future is notoriously hard, but

at least the spatio-temporal prediction variances can quantify how hard it is – if you use the

“right” model! In this spatio-temporal setting, what if your goal is not to predict new values

but to study the impact of covariates on a response? As we shall see, the same statistical

models that are useful for prediction also allow us to infer important relationships between

covariates and responses.

We see three principal goals for spatio-temporal statistical modeling:

1. predicting a plausible value of a response variable at some location in space within

the time span of the observations and reporting the uncertainty of that prediction;

2. performing scientific inference about the importance of covariates on the response

variable in the presence of spatio-temporal dependence; and

3. forecasting the future value of the response variable at some location, along with the

uncertainty of that forecast.

It is important to note that our observations associated with each of these goals will always

include measurement error and will often be incomplete, in the sense that there are some

locations in space and time that have missing observations. When modeling to accomplish
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any of the goals above, we have to be able to take into account these data issues, and also

that our model is almost surely “wrong.” As the famous aphorism by George Box goes,

“all models are wrong but some are useful” (Box, 1976, 1979). Our task is to maximize the

“usefulness” and to minimize the “wrongness.”

The primary purpose of this chapter is to present an example illustrating each of the

three goals given above, along with a potential modeling solution that initially does not

account for a spatio-temporal error process. This will allow us to illustrate some of the

benefits and shortcomings of standard approaches and show why it is often better to con-

sider statistical models that do account for spatio-temporal dependent errors (see Chapters

4 and 5). This will also give you a chance to use some of the visualization and exploratory

techniques you learned in Chapter 2, and the R Labs at the end of this chapter will further

develop your R programming and analysis skills for spatio-temporal data, in preparation for

later chapters.

3.1 Spatio-Temporal Prediction

To start with, consider the prediction (i.e., “interpolation”) of maximum daily temperatures

on 15 July 1993 at the location denoted by the triangle in the top panel of Figure 3.1, given

observations on the same variable on the same date at 138 measurement locations in the

central USA (NOAA data set). We seek a predictor, and it is easy to imagine visually how

we might construct one – we somehow just combine the nearest observations. Indeed, as

mentioned in Section 1.2.2, Tobler’s “law” suggests that we should give more weight to

nearby observations when we interpolate. But, why stop with just space? We also have

other observations at different time points, so we should consider nearby observations in

both space and time, as shown in the bottom panel of Figure 3.1. We have already shown

in Chapter 2 (e.g., Figure 2.9) that there is strong spatio-temporal dependence in these data.

Since we have observations at times before and after 15 July 1993, this application is an

example of smoothing – that is, we seek a smoothing predictor. If we only had observations

up to 15 July, then we would seek a filtering predictor for the entire temperature field on

15 July 1993, and a forecasting predictor for the entire field at any time after 15 July 1993.

Discussion of the distinction between the three types of spatio-temporal predictor is given

in Section 1.3.

Deterministic Prediction

Perhaps the simplest way to perform spatio-temporal prediction would be to follow Tobler’s

law and simply average the data in such a way as to give more weight to the nearest ob-

servations in space and time. The most obvious way to do this is through inverse distance

weighting (IDW). Suppose we have spatio-temporal data given by

{Z(s11; t1), Z(s21; t1), . . . , Z(sm11; t1), . . . , Z(s1T ; tT ), Z(s2T ; tT ), . . . , Z(smTT ; tT )},
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Figure 3.1: Top: NOAA maximum daily temperature observations for 15 July 1993 (de-

grees Fahrenheit). Bottom: NOAA maximum daily temperature observations for 01, 15,

and 30 July 1993 (degrees Fahrenheit). The triangle corresponds to a spatial location and

time point {s0; t0} for which we would like to obtain a prediction of the maximum daily

temperatures.

where for each time tj we have mj observations. Then the IDW predictor at some location

s0 and time t0 (where, in this smoothing-predictor case, we assume that t1 ≤ t0 ≤ tT ) is

given by

Ẑ(s0; t0) =

T∑

j=1

mj∑

i=1

wij(s0; t0)Z(sij ; tj), (3.1)
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where

wij(s0; t0) ≡
w̃ij(s0; t0)∑T

k=1

∑mk

ℓ=1 w̃ℓk(s0; t0)
, (3.2)

w̃ij(s0; t0) ≡
1

d((sij ; tj), (s0; t0))α
, (3.3)

d((sij ; ti), (s0; t0)) is the “distance” between the spatio-temporal location (sij ; tj) and the

prediction location (s0; t0), and the power coefficient α is a positive real number that con-

trols the amount of smoothing (e.g., often α = 2, but it does not have to be). The notation

makes this look more complicated than it actually is: IDW is simply a weighted average of

the data points, giving the closest locations more weight (while requiring that the weights

sum to 1). You are free to choose your preferred distance d(·, ·); a simple one is the Eu-

clidean distance (although this implicitly treats space and time in the same way, which

may not be appropriate; see Section 4.2.3). Note that if we were interested in predicting

at a different spatio-temporal location, we would necessarily get different weights, but in

a way that respects Tobler’s first law of geography. Also note that some practitioners re-

quire an “exact interpolator” in the sense that if the prediction location (s0; t0) corresponds

to a data location, they want the prediction to be exactly the same as the data value (so,

not a smoothed estimate there). The formula in (3.1) gives an exact interpolator. Thus,

Ẑ(s0; t0) = Z(skℓ; tℓ) if a data location (skℓ; tℓ) corresponds to the prediction location

(s0; t0) (since α > 0, (s0; t0) being a data location implies that the right-hand side of (3.3)

is infinite, so it gets a weight of 1 in (3.2)). As discussed in Cressie (1993, p. 379), ex-

act interpolators can be problematic when one has measurement uncertainty, and one way

to obtain a smoothing predictor is to use weights in (3.3) proportional to 1/(d(·, ·) + c)α,

where c > 0. (Setting c = 0 reverts to the exact interpolator.)

R tip: Computing distances between a single set of coordinates can be done in base

R using the function dist. To compute distances between two sets of coordinates, it

is more convenient to use the function rdist in the package fields, or the function

spDists in the package sp, both of which take two sets of coordinates as arguments.

The latter also works with Spatial objects defined in the package sp.

The left panel in Figure 3.2 shows predictions of maximum temperature for six days

within the month of July 1993 using 30 days of July 1993 data, where data from 14 July

1993 was omitted. These predictions were obtained using IDW with α = 5. In this ex-

ample, setting α to a smaller value (such as 2) gives a smoother surface since more weight

is given to observations that are “far” from the prediction locations. In deterministic in-

terpolators, smoothing parameters such as α are usually chosen using a procedure known

as cross-validation (see Technical Note 3.1 and the left panel in Figure 3.3). From the
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Figure 3.2: Predictions of Tmax in degrees Fahrenheit for the maximum temperature in

the NOAA data set within a square box enclosing the domain of interest for six days (each

five days apart) spanning the temporal window of the data, 01 July 1993 to 30 July 1993,

using (left) inverse distance weighting functionality from the R package gstat with inverse

distance power α = 5 and (right) a Gaussian radial basis kernel with bandwidth θ = 0.5.

Data for 14 July 1993 were omitted from the original data set.

IDW prediction in Figure 3.2, we observe that our predictions on the day with no data

look smoother than those on days for which we have data. We shall see in Chapter 4 that

this is typical of most predictors, including stochastic ones that are optimal in the sense of

minimizing the mean squared prediction error (MSPE).

In general, IDW is a type of spatio-temporal kernel predictor. That is, in (3.3) we can

let

w̃ij(s0; t0) = k((sij ; tj), (s0; t0); θ),

where k((sij ; tj), (s0; t0); θ) is a kernel function (i.e., a function that quantifies the similar-

ity between two locations) that depends on the distance between (sij ; tj) and (s0; t0) and

some bandwidth parameter, θ. Specifically, the bandwidth controls the “width” of the ker-

nel, so a larger bandwidth averages more observations (and produces smoother prediction

fields) than a narrow bandwidth. A classic example of a kernel function is the Gaussian

radial basis kernel

k((sij ; tj), (s0; t0); θ) ≡ exp

(
−1

θ
d((sij ; tj), (s0; t0))

2

)
, (3.4)

where the bandwidth parameter θ is proportional to the variance parameter in a normal

(Gaussian) distribution. Many other kernels exist (e.g., tricube, bisquare, Epanechnikov),

some of which have compact support (i.e., provide zero weight beyond a certain distance

threshold). If we write d(·, ·)α = exp(α log d(·, ·)), it is clear that α in IDW plays the

role of the bandwidth parameter and IDW has non-compact support. The right panel of

Figure 3.2 shows an interpolation of the NOAA temperature data using a Gaussian radial
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Figure 3.3: The leave-one-out cross-validation score CV(m) (see Technical Note 3.1) for

different values of α and θ when doing IDW prediction (left) and Gaussian kernel prediction

(right) of maximum temperature in the NOAA data set in July 1993.

basis kernel with θ = 0.5. As in IDW, θ is usually chosen by cross-validation (see the right

panel in Figure 3.3).

Traditional implementations of deterministic methods do not explicitly account for mea-

surement uncertainty in the data nor do they provide model-based estimates of the predic-

tion uncertainty. One might argue that, for non-exact interpolators, one is implicitly re-

moving (filtering or smoothing) the observation error with the averaging that takes place as

part of the interpolation. However, there is no mechanism to incorporate explicit knowl-

edge of the magnitude of the measurement error. Regarding prediction uncertainty of de-

terministic predictors, we can get estimates of the overall quality of predictions by doing

cross-validation (see Technical Note 3.1). Recall that we have also suggested using cross-

validation to select the degree of smoothing (e.g., the α parameter in IDW and, more gener-

ally, the θ parameter in the kernel-based prediction). As an example, in Figure 3.3 we show

the leave-one-out cross-validation (LOOCV) MSPE score for different values of α and θ
(lower cross-validation scores are better) when doing IDW and Gaussian kernel smoothing

for the NOAA maximum temperature data set in July 1993. These cross-validation analyses

suggest that α = 5 and θ = 0.6 are likely to give the best out-of-sample predictions for this

specific example. In addition, note that the lowest cross-validation score for the Gaussian

kernel smoother is lower (i.e., better) than the lowest cross-validation score for IDW. This

suggests that the Gaussian kernel smoother is likely to be a better predictor than the IDW

smoother for these data.

Cross-validation can also be used to compare models through their predictions, as the

following Technical Note 3.1 explains.
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Technical Note 3.1: Cross-Validation

Cross-validation seeks to evaluate model predictions by splitting up the data into a train-

ing sample and a validation sample, then fitting the model with the training sample and

evaluating it with the validation sample. In K-fold cross-validation we randomly split the

available data into K roughly equal-size components (or “folds”). Each fold is held out,

the model is trained on the remainingK−1 folds, and then the model is evaluated on the

fold that was held out. Specifically, for k = 1, . . . ,K folds, fit the model with the kth

fold removed, and obtain predictions Ẑ
(−k)
i for i = 1, . . . ,mk, where mk is the number

of data in the kth fold. We then select a metric by which we evaluate the predictions

relative to the held-out samples. For example, if we were interested in the mean squared

prediction error (MSPE), we would compute MSPEk = (1/mk)
∑mk

i=1(Zi − Ẑ
(−k)
i )2

for the mk observations in the kth fold, k = 1, . . . ,K. The K-fold cross-validation

score is then

CV(K) =
1

K

K∑

k=1

MSPEk.

It has been shown empirically that good choices for the number of folds are K = 5 and

K = 10.

A special case of K-fold cross-validation occurs when K = m. This is called leave-

one-out cross-validation (LOOCV). In this case, only a single observation is used for

validation and the remaining observations are used to make up the training set. This is

repeated for all m observations. The LOOCV score is then

CV(m) =
1

m

m∑

i=1

MSPEi.

LOOCV typically has low bias as an estimate of the expected squared error of a test

sample, but it can also have high variance. This is why the choice of K = 5 or K = 10
often provides a better compromise between bias and variance. It is also the case that

LOOCV can be computationally expensive to implement in general, since it requires

the model to be fitted m times (although there are notable exceptions such as with the

predicted residual error sum of squares (PRESS) statistic in multiple linear regression

models; see Appendix B). For more details on cross-validation, see Hastie et al. (2009,

Section 7.10).

R tip: K-fold cross-validation is an “embarrassingly parallel” problem since all the K
validations can be done simultaneously. There are several packages in R that enable this,
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with parallel and foreach among the most popular. The vignettes in these packages

contain more information on how to use them for multicore computing.

3.2 Regression (Trend-Surface) Estimation

In Section 3.1 we presented some simple deterministic predictors to obtain predictions at

spatio-temporal locations given a spatio-temporal data set. We can also use a basic statist-

ical regression model to obtain predictions for such data, assuming that all of the spatio-

temporal dependence can be accounted for by “trend” (i.e., covariate) terms. Such a model

has the advantage of being exceptionally simple to implement in almost any software pack-

age. In addition, a regression model explicitly accounts for model error (usually assumed

independent), and it also allows us to obtain a model-based prediction-error variance, al-

though cross-validation scores still provide useful insight into model performance.

Consider a regression model that attempts to account for spatial and temporal trends.

To make the notation a bit simpler, we consider the case where we have observations at

discrete times {tj : j = 1, . . . , T} for all spatial data locations {si : i = 1, . . . ,m}. For

example,

Z(si; tj) = β0 + β1X1(si; tj) + . . .+ βpXp(si; tj) + e(si; tj), (3.5)

where β0 is the intercept and βk (k > 0) is a regression coefficient associated with

Xk(si; tj), the kth covariate at spatial location si and time tj . We also assume for the

moment iid errors such that e(si; tj) ∼ indep. N(0, σ2e) for all {si; tj} where there are

data, and note that N(µ, σ2) corresponds to a normal distribution with mean µ and vari-

ance σ2. The covariates Xk(si; tj) may describe explanatory features, such as elevation,

that vary spatially but are temporally invariant (on the scales of interest here), time trends

(such as an overall seasonal effect) that are spatially invariant but temporally varying, or

other variables such as humidity, that are both spatially and temporally varying. We might

also consider spatio-temporal “basis functions” that can be used to reconstruct the observed

data.

We take a little space here to discuss basis functions beyond the brief explanation given

in Chapter 1. What are basis functions? Imagine that we have a complex curve or surface

in space. We are often able to decompose this curve or surface as a linear combination of

some “elemental” basis functions. For example,

Y (s) = α1φ1(s) + α2φ2(s) + . . .+ αrφr(s), (3.6)

where {αi} are constants and {φi(s)} are known basis functions. We can think of the

coefficients {αi} as weights that describe how important each basis function is in repre-

senting the function Y (s). The basis functions can be local with compact support, or can
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Figure 3.4: Left: Local (top) and global (bottom) basis functions over a one-dimensional

spatial domain. Different colors are used to denote different basis functions. Right: Linear

combination (red curve) of the individual basis functions (dashed lines depicted in the left

panels). In this case, the coefficients {αi} give the relative importance of the basis functions

(curves).

be global, taking values across the whole domain (see Figure 3.4). In statistics, when Y (s)
is a random process, we typically assume the basis functions are known and the coefficients

(weights) are random. The expression in (3.6) could be written as a function of time t, or

most generally as a function of s and t. In time series, the domain over which the basis

functions take their values is the one-dimensional real line, whereas in spatial statistics, the

domain is typically one-dimensional space (see Figure 3.4) or two-dimensional space (see

Figure 3.5); in spatio-temporal statistics, the domain is over both space and time. Examples

of basis functions include polynomials, splines, wavelets, sines and cosines, among many

others. We often construct spatio-temporal basis functions via a tensor product of spatial

basis functions and temporal basis functions (see Technical Note 4.1).

Now consider the maximum daily temperature Tmax in the NOAA data set for the

month of July 1993, where we have observations at m = 138 common spatial locations

{si : i = 1, . . . ,m} for {tj : j = 1, . . . , T = 31} days. In this case, we could account

for spatial trends by allowing the covariates {Xk} to correspond to the spatio-temporal

coordinate, and/or their transformations and interactions. For example, let si ≡ (s1,i, s2,i)
′,

and consider a linear model with the following basis functions:

• overall mean: X0(si; tj) = 1, for all si and tj ;

• linear in lon-coordinate: X1(si; tj) = s1,i, for all tj ,

• linear in lat-coordinate: X2(si; tj) = s2,i, for all tj ;

• linear time (day) trend: X3(si; tj) = tj , for all si;
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Spatial Basis Functions
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Figure 3.5: Two-dimensional spatial basis functions and associated coefficients α1 and α2

that lead to two different spatial-process realizations, Y1(s) and Y2(s), respectively.

• lon–lat interaction: X4(si; tj) = s1,i s2,i, for all tj ;

• lon–t interaction: X5(si; tj) = s1,i tj , for all s2,i;

• lat–t interaction: X6(si; tj) = s2,i tj , for all s1,i;

• additional spatial-only basis functions: Xk(si; tj) = φk−6(si), k = 7, . . . , 18, for all

tj (see Figure 3.6).

Note that the space and time coordinates used in X0, . . . , X6 can be thought of as basis

functions; we choose the separate notation between these latitude, longitude, and time trend

covariates and the spatial-only basis functions (denoted {φk : k = 1, . . . , 12}) given in

Figure 3.6 for the sake of interpretability. In this example, there is an intercept and p = 18
regression coefficients.

The regression model given in (3.5) can be fitted via ordinary least squares (OLS), in

which case we find estimates of the parameters β0, β1, . . . , βp that minimize the residual

sum of squares,

RSS =
T∑

j=1

m∑

i=1

(Z(si; tj)− Ẑ(si; tj))
2. (3.7)
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Figure 3.6: The time-invariant basis functions, φ1(s), . . . , φ12(s), used for regression pre-

diction of maximum temperature data from the NOAA data set for July 1993.

We denote these estimates by {β̂0, β̂1, . . . , β̂p} and we write Ẑ(s; t) = β̂0 + β̂1X1(s; t) +

. . . + β̂pXp(s; t). (We also obtain an estimate of the variance parameter, namely σ̂2e =
RSS/(mT − p − 1).) This then allows us to get predictions for a mean response, or a

new response, Z(s0; t0), at any location {s0; t0} for which we have covariates. We can

also obtain uncertainty estimates for these predictions. The formulas for these estimates

and predictors are most easily seen from a matrix representation, as shown in Technical

Note 3.3. Figure 3.7 shows the predictions and the prediction standard errors (assuming

the regression model with an intercept and p = 18) for the maximum temperature data in

the NOAA data set in July 1993, with 14 July 1993 omitted when fitting the model. The

predictions are much smoother than those found using kernel smoothing (Figure 3.2), a

direct result of using basis functions that are spatio-temporally smooth. This is not always

the case, and using covariates that are highly spatially varying (e.g., from topography) will

yield predictions that also vary substantially with space. Note also from Figure 3.7 that the
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Figure 3.7: Regression predictions (left) and associated prediction standard errors (right) of

maximum temperature (in degrees Fahrenheit) within a square box enclosing the domain

of interest for six individual days (each 5 days apart) in July 1993 using the R function lm.

Data for 14 July 1993 were purposely omitted from the original data set during fitting.

prediction standard errors do not show much structure because the Xs are accounting for

most of the spatio-temporal variation in the data. Uncertainty increases at the domain edges

where prediction becomes extrapolation.

It is important to mention here that the regression model given in equation (3.5) does

not explicitly account for measurement errors in the responses, and thus that variation due

to measurement error is confounded with the variation due to lack of fit in the residual

variance σ2e . We account explicitly for this measurement-error variation (and small-scale

spatio-temporal variation) in Chapters 4 and 5. In addition, note that the regression predictor

can be considered a type of kernel predictor (see Appendix B).

R tip: Basis functions such as those depicted in Figure 3.6 can be easily constructed

using the package FRK, which we explore further in Chapter 4. Basis functions can

be constructed at multiple resolutions, can be spatial-only (as used here) or also spatio-

temporal. See Lab 3.2 for more details.

3.2.1 Model Diagnostics: Dependent Errors

When we first learn how to do regression modeling in statistics, we gain an appreciation for

the importance of model diagnostics to verify the assumptions of the model. For example,

we look for the presence of outliers, influential observations, non-constant error variance,

non-normality, dependence in the errors, and so forth (see, for example, Kutner et al., 2004).

It is particularly important to consider the possibility of dependent errors in the case where
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Figure 3.8: Empirical spatio-temporal semivariogram of the residuals after fitting a linear

model to daily maximum temperatures in the NOAA data set during July 2003, computed

using the function variogram in gstat.

the data are indexed in space or time (see Chapter 6 for more detailed discussion about

model evaluation). From an exploratory perspective, one can calculate the spatio-temporal

covariogram (or semivariogram), discussed in Chapter 2, from the residuals, ê(si; tj) ≡
Z(si; tj)−Ẑ(si; tj), and look for dependence structure as a function of spatial and temporal

lags. As seen in Figure 3.8, there is ample spatial and temporal structure in the residuals.

It is instructive to compare Figure 3.8 with the empirical semivariogram calculated from

the original data set and given in Figure 2.17. The former has a lower sill, and therefore

the basis functions and the other covariates have been able to explain some of the spatio-

temporal variability in the data, but clearly not all of it.

More formally, one can apply a statistical test for temporal dependence such as the

Durbin–Watson test (see Technical Note 3.2), and if the data correspond to areal regions

in two-dimensional space, one can use a test for spatial dependence such as Moran’s I
test (see Technical Note 3.2). In looking at spatio-temporal dependence, we can consider

the “space-time index” (STI) approach of Henebry (1995), which is a type of Moran’s I
statistic for spatio-temporal data (see Cressie and Wikle, 2011, p. 303). This approach

was developed for areal regions that have a known adjacency structure. In principle, this

can be extended to the case of spatio-temporal data with continuous spatial support; see

Lab 3.2.
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Alternatively, we can consider a spatio-temporal analog to the Durbin–Watson test.

Cressie and Wikle (2011, p.131) give a statistic based on the empirical (spatial) semivario-

gram that can be extended to the spatio-temporal setting. In particular, let

F ≡
∣∣∣∣
γ̂e(||h1||; τ1)

σ̂2e
− 1

∣∣∣∣ ,

where γ̂e(||h1||; τ1) is the empirical semivariogram estimate at the smallest possible spatial

(||h1||) and temporal (τ1) lags (see Technical Note 2.1), and σ̂2e is the regression-error-

variance estimate (see Technical Note 3.3). If this value of F is “large,” we reject the null

hypothesis of spatio-temporal independence. We can evaluate what is “large” in this case

by doing a permutation test of the null hypothesis of independence, which does not depend

on any distributional assumptions on the test statistic, F . In this case, the data locations

(in space and time) are randomly permuted and F is calculated for many such permutation

samples. If the statistic F calculated with the observed data is below the 2.5th percentile or

above the 97.5th percentile of these permutation samples, then we reject the null hypothesis

of spatio-temporal independence (at the 5% level of significance), which suggests that the

data are dependent.

Technical Note 3.2: Durbin–Watson and Moran’s I Tests

One of the most used tests for serial dependence in time-series residuals is the Durbin–

Watson test (e.g., Kutner et al., 2004, p. 487). Let êt = Zt−Ẑt be the residual from some

fitted time-series model for which we have T observations {Zt}. The Durbin–Watson

test statistic is given by

d =

∑T
t=2(êt − êt−1)

2

∑T
t=1 ê

2
t

.

The intuition for this test is that if residuals are highly (positively) correlated, then êt −
êt−1 is small relative to êt and so, as d gets closer to 0, there is more evidence of positive

serial dependence (e.g., a “rule of thumb” suggests that values less than 1 indicate strong

positive serial dependence). In contrast, as the value of d gets larger (it is bounded above

by 4), it is indicative of no positive serial dependence. This test can be formalized with

appropriate upper and lower critical values for d, and statistical software packages can

easily calculate these, as well as the analogous test for negative serial dependence.

One of the most commonly used tests for spatial dependence for spatial lattice data is

Moran’s I test (e.g., Waller and Gotway, 2004, Section 7.4). This test can be applied

to the data directly, or to the residuals from some spatial regression model. Let {Zi :
i = 1, . . . ,m} represent spatially referenced data (or residuals) for m spatial locations.

Then, Moran’s I statistic is calculated as

I =
m
∑m

i=1

∑m
j=1wij(Zi − Z̄)(Zj − Z̄)

(
∑m

i=1

∑m
j=1wij)(

∑m
i=1(Zi − Z̄)2)

, (3.8)
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where Z̄ = (1/m)
∑m

i=1 Zi is the spatial mean and wij are spatial adjacency “weights”

between locations i and j (where we require wii = 0, for all i = 1, . . . ,m). Thus,

Moran’s I statistic is simply a weighted form of the usual Pearson correlation coefficient,

where the weights are the spatial proximity weights, and it takes values between −1 and

1. If (3.8) is positive, then neighboring regions tend to have similar values, and if it

is negative, then neighboring regions tend to have different values. Appropriate critical

values or p-values are easily obtained in many software packages.

Note that there are additional measures of temporal dependence (e.g., the Ljung–Box

test; see Shumway and Stoffer, 2006, p.129) and spatial dependence (e.g., the Geary C
test; see Waller and Gotway, 2004, Section 7.4).

It is very common, when studying environmental phenomena, that a linear model of

some covariates will not explain all the observed spatio-temporal variability. Thus, fitting

such a model will frequently result in residuals that are spatially and temporally correlated.

This is not surprising, since several environmental processes are certainly more complex

than could be described by simple geographical and temporal trend terms. In Figure 3.9 we

show the time series of the residuals at two observation locations (81.38◦W, 35.73◦N) and

(83.32◦W, 37.60◦N), respectively, and the spatial residuals between 24 July and 31 July

1993. The residual time series exhibit considerable temporal correlation (i.e., residuals

close together in time tend to be more similar than residuals far apart in time), and the

spatial residuals exhibit clear spatial correlation (i.e., residuals close together in space tend

to be more similar than residuals far apart in space). In Lab 3.2 we go further and use the

Durbin–Watson and Moran’s I tests to reject the null hypotheses of no temporal or spatial

correlation in these residuals.

Given that our diagnostics have suggested there is spatio-temporal dependence in the

errors after fitting the trend surface, what can we do? Readers who are familiar with more

complicated regression procedures might suggest that we could use a generalized least

squares (GLS) procedure that explicitly accounts for the dependence in the errors. That

is, GLS relaxes the assumption of independence in the errors, so that e(si; tj) and e(sℓ; tk)
could be correlated. In this case, the vector of errors, e ≡ (e(s1; t1), . . . , e(sm; tT ))

′, has

the multivariate normal distribution e ∼ N(0,Ce), where Ce is a spatio-temporal covari-

ance matrix. But do we know in advance what this covariance matrix is? Typically, no

– and it is further complicated by the fact that to predict at spatio-temporal locations for

which we do not have data, we need to know what the error dependence is between any two

locations in time and space within our prediction domain, not just those for which we have

observations! This aspect of spatio-temporal prediction will be a primary focus of Chapter

4.

One might ask, what is the problem with ignoring the dependence in the errors when

doing OLS regression? The answer depends somewhat on the goal. It is fairly easy to show
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Figure 3.9: (Top) Temporal residuals at station 3810 (black line) and station 3889 (red

line), and (bottom) spatial residuals between 24 and 31 July 1993, inclusive, when fitting

the regression (trend) model described in Section 3.2 to the maximum temperature data in

the NOAA data set in July 1993 (but recall that in the fitting we excluded data from 14 July

1993). The triangles denote the two station locations.

that the OLS parameter estimates and predictions are still unbiased even if one has ignored

the dependence in the errors. But ignoring the dependence tends to give inappropriate

standard errors and prediction standard errors. In the case of positive dependence (which

is the most common case in spatio-temporal data – recall Tobler’s law), the standard errors

and prediction standard errors are underestimated if one ignores dependence, giving a false

sense of how good the estimates and predictions really are. This issue comes up again in

Section 3.2.2.
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Technical Note 3.3: Ordinary Least Squares Regression: Matrix Representation

Consider an m-dimensional response vector, Z = (Z1, . . . , Zm)′, and an m × (p + 1)
matrix of predictors, X, where we assume that the first column of this matrix contains a

vector of 1s for the model intercept. That is,

X =




1 x11 . . . x1p
1 x21 . . . x2p
...

...
. . .

...

1 xm1 . . . xmp


 .

Then the regression equation is given by

Z = Xβ + e,

where β is a (p + 1)-dimensional parameter vector, and the error vector, e =
(e1, . . . , em)′, has the multivariate normal distribution e ∼ N(0, σ2eI), where I is an

m × m identity matrix. The ordinary least squares parameter estimates are given by

β̂ = (X′X)−1X′Z, and the variance–covariance matrix for these estimates is given by

σ̂2e(X
′X)−1, with σ̂2e = (1/(m−p−1))

∑
i(Zi−Ẑi)

2. The estimated mean response and

prediction, Ẑi, is given by Ẑi = x′
iβ̂, where x′

i is the ith row of X. Further, the variance

of the jth regression-coefficient estimator, β̂j , is given by the jth diagonal element of

σ̂2ǫ (X
′X)−1. If Ẑi is an estimate of the mean response, then an estimate of its variance is

given by σ̂2e(x
′
i(X

′X)−1xi). If one is predicting a new observation, say Zh, the predic-

tion is Ẑh = x′
hβ̂, and the prediction variance is estimated by σ̂2e(1 + x′

h(X
′X)−1xh).

Derivations and details can be found in textbooks on multiple regression (see, for ex-

ample, Kutner et al., 2004).

3.2.2 Parameter Inference for Spatio-Temporal Data

In many scientific applications of spatio-temporal modeling, one may only be interested in

whether the covariates (the Xs) are important in the model for explanation rather than for

prediction. Such examples typically include scientifically meaningful covariates, such as a

habitat covariate (X) related to the relative abundance (Z) of an animal in some area, or

whether some demographic variable (X) is associated with household income (Z). In this

section, for illustration we again consider the maximum temperature data in the NOAA data

set – specifically, we consider the regression model given in Section 3.2, but our focus here

is on the regression parameters. For example, do we need the longitude-by-latitude spatial

interaction term (X4) or the latitude-by-day term (X6) in the regression?
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Table 3.1: Estimated regression coefficients and the standard errors (within parentheses) for

the linear regression model of Section 3.2 when using ordinary least squares (OLS) and gen-

eralized least squares (GLS). One, two, and three asterisks are used to denote significance

at the 10%, 5%, and 1% levels of significance, respectively.

Dependent variable:

Max. Temperature (◦F)

β̂ols (SE(β̂ols)) β̂gls (SE(β̂gls))

Intercept 192.240∗∗ (97.854) 195.320∗∗ (98.845)
Longitude 1.757 (1.088) 1.780 (1.097)
Latitude −1.317 (2.556) −0.974 (2.597)
Day −1.216∗∗∗ (0.134) −1.237∗∗∗ (0.136)
Longitude × Latitude −0.026 (0.028) −0.022 (0.029)
Longitude × Day −0.023∗∗∗ (0.001) −0.023∗∗∗ (0.001)
Latitude × Day −0.019∗∗∗ (0.002) −0.019∗∗∗ (0.002)
α1 16.647∗∗∗ (4.832) 19.174∗∗∗ (4.849)
α2 18.528∗∗∗ (3.056) 16.224∗∗∗ (3.125)
α3 −6.607∗∗ (3.172) −4.204 (3.199)
α4 30.545∗∗∗ (4.370) 27.500∗∗∗ (4.493)
α5 14.739∗∗∗ (2.747) 13.957∗∗∗ (2.759)
α6 −17.541∗∗∗ (3.423) −15.779∗∗∗ (3.461)
α7 28.472∗∗∗ (3.552) 25.985∗∗∗ (3.613)
α8 −27.348∗∗∗ (3.164) −25.230∗∗∗ (3.202)
α9 −10.235∗∗ (4.457) −7.401 (4.556)
α10 10.558∗∗∗ (3.327) 8.561∗∗ (3.396)
α11 −22.758∗∗∗ (3.533) −19.834∗∗∗ (3.569)
α12 21.864∗∗∗ (4.813) 17.771∗∗∗ (5.041)

Observations 3,989 3,989

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

The middle column of Table 3.1 shows the OLS parameter estimates and their stand-

ard errors (i.e., square root of their variances) from the OLS fit of this regression model,

assuming independent errors. The standard errors suggest that longitude, latitude, and the

longitude–latitude interaction, are not important in the model given all of the other variables

included in the model, based on the observation that their confidence intervals cover zero.

It might be surprising to think that latitude is not important here, since we saw in Chapter 2

that there is a clear latitudinal dependence in temperature for these data (it is typically cooler

the further north you go in the central USA). But recall that when interpreting parameters
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in multiple regression we are considering their importance in the presence of all of the other

variables in the model. Thus, this result may be due to the fact that there are interactions of

the latitude effect with longitude and/or time, or it could be due to other factors. We discuss

some of these below.

As discussed in Section 3.2, the residuals from this regression fit exhibit spatio-temporal

dependence, and thus the OLS assumption of independent errors is violated, which calls

into question the validity of the standard errors given in the middle column of Table 3.1.

As already mentioned, in the case of positive dependence (present in the residuals here) the

standard errors are underestimated, potentially implying that a covariate is important in the

model when it really is not. In the right-hand column we show the estimates and standard

errors after fitting using GLS, where the covariance of the errors is assumed, a priori, to be

a function of distance in space and time, specifically constructed from a Gaussian kernel

with bandwidth 0.5 (see Lab 3.2 for details). Note that all the standard errors are larger, and

some of our conclusions have changed regarding which effects are significant, and which

are not.

Readers who are familiar with regression analysis may also recall that there are other

factors that might affect the standard errors given in Table 3.1. For example, the presence of

moderate to serious multicollinearity in the covariates (e.g., when some linear combination

of Xs is approximately equal to one or more of the other X variables) can inflate the

standard errors. In Lab 3.2, we see the effect of adding another basis function, φ13(s),
that is a slightly noisy version of φ5(s). Without φ13(s), the effect of φ5(s) is considered

significant in the model (see Table 3.1). However, the estimate of α5 is not significant at

the 1% level when both φ5(s) and φ13(s) are included in the model.

Inference can also be affected by confounding, in which interpretation or significance is

substantially altered when an important variable is ignored, or perhaps when an extraneous

variable is included in the model. Since we typically do not know or have access to all of the

important variables in a regression, this is often a problem. Indeed, one of the interpreta-

tions of dependent errors in spatial, time-series, and spatio-temporal models is that they

probably represent the effects of covariates that were left out of the model. As we describe

in Chapter 4, this implies that there can be confounding between the spatio-temporally

dependent random errors and covariates of primary interest, which can affect parameter

inference and accompanying interpretations. But, if our goal is spatio-temporal prediction,

this confounding is not necessarily a bad thing, since building dependence into the model

is somewhat of an “insurance policy” against our model missing important covariates.

R tip: Several excellent packages can be used to neatly display results from models in R,

such as xtable and stargazer. All tables in this chapter were produced using stargazer.
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3.2.3 Variable Selection

As mentioned in the previous section, it can be the case that when p (the number of co-

variates) is fairly large, we do not believe that all of them are truly related to the response,

and we are interested in choosing which are the most important. This is generally called

variable selection. Outside the context of regression, Chapter 6 considers the more general

problem of model selection.

It would be ideal if we could test all possible combinations of all p covariates and de-

termine which one gives the best predictive ability. This can be done if p is small, but it

quickly becomes problematic for large p as there are 2p possible models that would have to

be considered, assuming all of them have an intercept parameter. Alternatively, we can con-

sider a best subsets procedure that uses a special algorithm (such as the “leaps and bounds

algorithm”) to efficiently find a few of the best models for a given number of covariates

(see, for example, Kutner et al., 2004).

Another option is to use an automated selection algorithm such as forward selection. In

this case, we start with a model that includes just the intercept, and then we find which co-

variate reduces the error sums of squares (or some other chosen model-selection criterion)

the most. That covariate is added to the model, and we then consider which of the remain-

ing (p − 1) gives the best two-variable model. We continue this until some pre-specified

stopping rule is reached. In the context of the regression with the NOAA data set, Table 3.2

shows the best candidate models for one to four variables (in addition to the intercept), as

obtained by the forward-selection algorithm using the function step in R; here the Akaike

information criterion (AIC, see Section 6.4.4) was adopted as the model-selection criterion.

Note how the residual standard error decreases sharply with the inclusion of one covariate

(in this case, latitude) and slowly thereafter. We have already seen that there is consider-

able correlation between maximum temperature and latitude, so this is not surprising. As

further evidence of this, note that latitude, which was not significant in the full model, is

the single most important variable according to forward stepwise selection. But when the

latitude-by-day interaction term enters the model, the parameter estimate for latitude de-

creases noticeably. For comparison, Table 3.3 shows the same forward-selection analysis

but now using the residual sum of squares (RSS) as the model-selection criterion. Note

that this still has latitude as the most important single variable, but the longitude-by-day

interaction is the second variable entered into the model (followed by the latitude-by-day

variable), and the day variable is not included. This shows that the choice of criterion can

make a substantial difference when doing stepwise selection: the AIC criterion penalizes

for model complexity (i.e., the number of variables in the model), whereas the RSS criterion

does not.

Alternative stepwise methods include backward-selection and mixed-selection algo-

rithms (see James et al., 2013, Chapter 6). Note that no stepwise procedure is guaranteed

to give the best model other than for the single-covariate case, but these methods can pro-

vide potential candidate models that are reasonable. It is also important to realize that the
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Table 3.2: Estimated regression coefficients for the linear regression model of Section 3.2

when using ordinary least squares to estimate the parameters and forward selection based

on the AIC, starting from the intercept-only model. One, two, and three asterisks are used

to denote significance at the 10%, 5%, and 1% levels of significance, respectively. Note

that the residual standard error when fitting the full model (p = 18) was 4.22.

Dependent variable:

Max. Temperature (◦F)

β̂ols

(1) (2) (3) (4) (5)

Intercept 88.673∗∗∗ 148.940∗∗∗ 147.840∗∗∗ 136.810∗∗∗ 138.420∗∗∗

Latitude −1.559∗∗∗ −1.559∗∗∗ −1.274∗∗∗ −1.273∗∗∗

Day 0.069∗∗∗ 0.755∗∗∗ 0.755∗∗∗

Latitude × Day −0.018∗∗∗ −0.018∗∗∗

Longitude 0.019

Observations 3,989 3,989 3,989 3,989 3,989

Residual Std. Error 7.726 4.710 4.669 4.626 4.625

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

forward-selection procedure can be used in the “large p, small n” case where one has more

covariates p than observations n, at least up to models of size n − 1, which is increasingly

common in “big data” statistical-learning applications (James et al., 2013). (Note that in

this book we prefer to usem instead of n to represent sample size for spatio-temporal data.)

The subset-selection methods discussed above penalize model complexity at the ex-

pense of model fit by removing variables. This is a manifestation of a common problem in

statistics, balancing the trade-off between variance and bias. That is, these methods trade

some bias for variance reduction by removing variables. Another approach to this problem

in regression is to constrain the least squares estimates in such a way that the regression co-

efficients are regularized (or shrunk) towards zero, hence adding bias. The two most-used

approaches for regularization in regression are ridge regression and the lasso. These are

briefly described in Technical Note 3.4.

Technical Note 3.4: Ridge and Lasso Regression

Recall that the OLS spatio-temporal regression estimates are found by minimizing the

RSS given in (3.7). One can consider a regularization in which a penalty term is added to

the RSS that effectively shrinks the regression parameter estimates towards zero. Specif-
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Table 3.3: Same as Table 3.2 but using a forward-selection criterion given by the total

residual sum of squares.

Dependent variable:

Max. Temperature (◦F)

β̂ols

(1) (2) (3) (4) (5)

Intercept 88.673∗∗∗ 148.940∗∗∗ 147.780∗∗∗ 140.420∗∗∗ 122.020∗∗∗

Latitude −1.559∗∗∗ −1.560∗∗∗ −1.366∗∗∗ −0.838∗∗∗

Longitude × Day −0.001∗∗∗ −0.006∗∗∗ −0.011∗∗∗

Latitude × Day −0.012∗∗∗ −0.023∗∗∗

α10 −6.927∗∗∗

Observations 3,989 3,989 3,989 3,989 3,989

Residual Std. Error 7.726 4.710 4.661 4.607 4.470

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

ically, consider estimates of β that come from a penalized (regularization) form of the

RSS given by

T∑

j=1

m∑

i=1

[Z(si; tj)− (β0 + β1X1(si; tj) + . . .+ βpXp(si; tj))]
2 + λ

p∑

ℓ=1

|βℓ|q, (3.9)

where λ is a tuning parameter and
∑p

ℓ=1 |βℓ|q is the penalty term. Note that the penalty

term does not include the intercept parameter β0. When q = 2, the estimates, say β̂R,

are said to be ridge regression estimates, and when q = 1 the estimates, say β̂L, are lasso

estimates. Clearly, q = 2 corresponds to the square of an L2-norm penalty and q = 1
corresponds to anL1-norm penalty; recall that theL2-norm of a vector a = (a1, . . . , aq)

′

is given by

√∑q
k=1 a

2
k, and the L1-norm is given by

∑q
k=1 |ak|.

Thus, minimizing (3.9) with respect to the regression coefficients subject to these penalty

constraints attempts to balance the model fit (variance) given by the first term and shrink-

ing the parameters towards zero (adding bias) via the penalty term. It is clear that both

the ridge-regression estimates, β̂R, and the lasso estimates, β̂L, should be closer to zero

than the equivalent OLS estimates. (When λ = 0, the ridge or lasso estimates are just

the OLS estimates.) A potential advantage of the lasso is that it can shrink parame-

ters exactly to zero (unlike ridge regression, which only shrinks towards zero). This

provides a more explicit form of variable selection. More general regularization in re-
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gression can be achieved by assigning prior distributions to the parameters β and consid-

ering the analysis from a Bayesian perspective. Indeed, both ridge and lasso regression

have equivalent Bayesian formulations. In practice, one selects the tuning parameter λ
by cross-validation. Note also that these penalized regression estimates are not scale-

invariant, so one typically scales (and centers) the Xs when implementing ridge or lasso

regression. See James et al. (2013) for more information about these procedures.

3.3 Spatio-Temporal Forecasting

As an example of the third goal of spatio-temporal modeling, suppose we want to forecast

the sea surface temperature (SST) in the tropical Pacific Ocean six months from now. For

example, the top left panel of Figure 3.10 shows SST anomalies, which are just deviations

from long-term monthly averages, for April 1997, and the bottom right panel shows the

SST anomalies for October 1997. You might ask why we would be interested in predicting

SST six months ahead. As it turns out, the so-called El Niño Southern Oscillation (ENSO)

phenomenon is in this region, which is characterized by frequent (but not regular) periods of

warmer-than-normal and cooler-than-normal ocean temperatures, and ENSO has a dramatic

effect on worldwide weather patterns and associated impacts (e.g., droughts, floods, tropical

storms, tornadoes). Thus, being able to predict these warmer (El Niño) or cooler (La Niña)

periods can help with resource and disaster planning. The series of plots shown in Figure

3.10 corresponds to a major El Niño event.

One way we might try to forecast the SST anomalies into the future is to use regression.

For example, the Southern Oscillation Index (SOI) is a well-known indicator of ENSO

that is regularly recorded; here we consider it at monthly time steps. In what follows,

we use the SOI index at time t (e.g., April 1997) to forecast the SST at time t + τ (e.g.,

October 1997, where τ = 6 months). We do this for each spatial location separately,

so that each oceanic pixel in the domain shown in Figure 3.10 gets its own simple linear

regression (including an intercept coefficient and a coefficient corresponding to the lagged

SOI value). The top panels in Figure 3.11 show the intercept (left) and SOI regression

coefficient (right) for the regression fit at each location. Note the fairly distinct pattern in

these coefficients that corresponds to the El Niño warm region in Figure 3.10 – clearly, these

estimated regression coefficients exhibit quite strong spatial dependencies. The middle

panels in Figure 3.11 show contour plots of the the actual anomalies for October 1997

(left), as well as the pixelwise simple-linear-regression forecast based on SOI from April

1997 (right; note the different color scale). The associated regression-forecast prediction

standard error (see Technical Note 3.3) is given in the bottom panel.

It is clear that although the forecast in the middle-right panel of Figure 3.10 captures

the broad El Niño feature, it is very biased towards a cooler anomaly than that observed.
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Figure 3.10: Tropical Pacific Ocean SST anomalies for April, June, August, and October

1997. This series of plots shows the onset of the extreme El Niño event that happened in

the Northern Hemisphere in the fall of 1997.

This illustrates that we likely need additional information to perform a long-lead forecast

of SST, something we discuss in more detail using dynamic models in Chapter 5. This

example also shows that it might be helpful to account for the fact that these regression-

coefficient estimates show such strong spatial dependence. This is often the case in time-

series regressions at nearby spatial locations, and we shall see another example of this in

Section 4.4.

R tip: Fitting multiple models to groups of data in a single data frame in long format

has been made easy and computationally efficient using functions in the packages tidyr,

purrr, and broom. Take a look at Labs 3.2 and 3.3 to see how multiple models, predic-

tions, and tests can be easily carried out using these packages.

3.4 Non-Gaussian Errors

You have probably already heard about the normal distribution that was used to describe the

regression errors in the previous sections. The name “normal” seems to imply that any other

distribution is abnormal – not so! Data that are binary or counts or skewed are common and

of great interest to scientists and statisticians. Consequently, in spatial and spatio-temporal

statistics we use the terminology Gaussian distribution and “Gau” instead of “N ,” which
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Figure 3.11: Top: Spatially varying estimated intercept (left) and spatially varying esti-

mated regression coefficient of lagged SOI (right) in a simple linear regression of lagged

SOI on the SST anomalies at each oceanic spatial location (fitted individually). Middle:

Contour plots of SST anomalies for October 1997 (left) and six-month-ahead forecast

(right) based on a simple linear regression model regressed on the SOI value in April 1997.

Note the different color scales. Bottom: Prediction standard error for the forecast (see

Technical Note 3.3).

falls into line with the well-known Gaussian processes defined in time or in Euclidean space

(see Section 4.2). There are many off-the-shelf methods that can be used for non-Gaussian

modeling – both from the statistics perspective and from the machine-learning perspective.

By “machine learning” we are referring to methods that do not explicitly account for the

random spatio-temporal nature of the data. From the statistical perspective, we could simply

use a generalized linear model (GLM) or a generalized additive model (GAM) to analyze

spatio-temporal data.

3.4.1 Generalized Linear Models and Generalized Additive Models

The basic GLM has two components, a random component and a systematic component.

The random component assumes that observations, conditioned on their respective means

and (in some cases) scaling parameters, are independent and come from the exponential

family of distributions. That is,

Z(si; tj)|Y (si; tj), γ ∼ indep. EF (Y (si; tj); γ), (3.10)
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where EF (·) refers to the exponential family, Y (si; tj) is the mean, and γ is a scale para-

meter (see, for example, McCulloch and Searle, 2001, for details). Members of the ex-

ponential family include common distributions such as the normal (Gaussian), Poisson,

binomial, and gamma distributions.

The systematic component of the GLM then specifies a relationship between the mean

response and the covariates. In particular, the systematic component consists of a link

function that transforms the mean response and then expresses this transformed mean in

terms of a linear function of the covariates. In our notation, this is given by

g(Y (s; t)) = β0 + β1X1(s; t) + β2X2(s; t) + . . .+ βpXp(s; t), (3.11)

where g(·) is some specified monotonic link function. Note that in a classic GLM there

is no additive random effect term in (3.11), but this can be added to make the model a

generalized linear mixed model (GLMM), where “mixed” refers to having both fixed and

random effects in the model for g(Y (s; t)).
The GAM is also composed of a random component and a systematic component. The

random component is the same as for the GLM, namely (3.10). In addition, like the GLM,

the systematic component of the GAM also considers a transformation of the mean response

related to the covariates, but it assumes a more flexible function of the covariates. That is,

g(Y (s; t)) = β0 + f1(X1(s; t)) + f2(X2(s; t)) + . . .+ fp(Xp(s; t)), (3.12)

where the functions {fk(·)} can have a specified parametric form (such as polynomials

in the covariate), or, more generally, they can be some smooth function specified semi-

parametrically or nonparametrically. Often, fk(·) is written as a basis expansion (see Wood,

2017, for more details). Thus, the GLM is a special parametric case of the GAM. These

models can be quite flexible. Again, note that a random effect can be added to (3.12),

as with the GLM, in which case the model becomes a generalized additive mixed model

(GAMM).

As with normal (Gaussian) error regression, so long as covariates (or functions of these

in the case of GAMs) are available at any location in the space-time domain, GLMs or

GAMs can be used for spatio-temporal prediction. Whether or not this accommodates suf-

ficiently the dependence in the observations depends on the specific data set and the covari-

ates that are available. A straightforward way to fit a GLM in R is to use the function glm.

In Lab 3.4 we fit a GLM to the Carolina wren counts in the BBS data set, where we assume

a Poisson response and a log link. We consider the same classes of covariates used in the

regression example in Section 3.2, where the response was Tmax in the NOAA data set.

The latent mean surface is given by (3.11) (with estimated regression parameters β) and is

illustrated in Figure 3.12. This latent spatial surface captures the large-scale trends, but it is

unable to reproduce the small-scale spatial and temporal fluctuations in the Carolina wren

intensity, and the residuals show both temporal and spatial correlation. We could accommo-

date this additional dependence structure by adding more basis functions and treating their
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Figure 3.12: Prediction of log Y (·) for the Carolina wren sighting data set on a grid between

t = 1 (the year 1994) and t = 21 (2014) based on a Poisson response model, implemented

with the function glm. The log of the observed count is shown in circles using the same

color scale.

regression coefficients as fixed effects, but this will likely result in overfitting. In Chapter 4

we explore the use of random effects to circumvent this problem.

Recall that it is useful to consider residuals in the linear-regression context to evaluate

the model fit and potential violations of model assumptions. In the context of GLMs, we

typically consider a special type of residual when the data are not assumed to come from a

Gaussian distribution. Technical Note 3.5 defines so-called deviance residuals and Pearson

(chi-squared) residuals, which are often used for GLM model evaluation (see, for example,

McCullagh and Nelder, 1989). Heuristically, examining these residuals for spatio-temporal

structure can often suggest that additional spatial, temporal, or spatio-temporal random

effects are needed in the model, or that a different response model is warranted (e.g., to

account for over-dispersion; see Lab 3.4).

Technical Note 3.5: Deviance and Pearson Residuals

One way to consider the agreement between a model and data is to compare the pre-

dictions of the model to a “saturated” model that fits the data exactly. In GLMs, this

corresponds to the notion of deviance. Specifically, suppose we have a model for an

m-vector of data Z that depends on parameters θmodel and has a log-likelihood given by
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ℓ(Z;θmodel). We then define the deviance as

D(Z; θ̂model) = 2{ℓ(Z; θ̂sat)− ℓ(Z; θ̂model)} =

m∑

i=1

D(Zi; θ̂model),

where ℓ(Z; θ̂sat) is the log-likelihood for the so-called saturated model, which is the

model that has one parameter per observation (i.e., that fits the data exactly). Note that

D(Zi; θ̂model) corresponds to the contribution of observation Zi to the deviance given

the parameter estimates θmodel. The deviance is just 2 times the log-likelihood ratio of

the full (saturated) model relative to the reduced model of interest. We then define the

deviance residual as

rd,i ≡ sign(Zi − µ̂i)

√
D(Zi; θ̂model), (3.13)

where µ̂i corresponds to E(Zi|θ̂model), the estimate of the mean response from the

model given parameter estimates, θ̂model. The sign(·) function in (3.13) assigns the

sign of the residual to indicate whether the mean response is less than or greater than

the observation. In practice, we often consider standardized deviance residuals (see, for

example, McCullagh and Nelder, 1989).

Alternatively, we can define a standardized residual that more directly considers the

difference between the data and the estimated mean response. That is,

rp,i ≡
(Zi − µ̂i)

2

V (µ̂i)
,

where V (µ̂i) is called the variance function, and it is generally a function of the mean

response (except when the likelihood is Gaussian). The specific form of the variance

function depends on the form of the data likelihood. The unsigned residual, rp,i, is

known as a Pearson residual (or Pearson chi-squared residual) because the sum of these

residuals for all i = 1, . . . ,m gives a Pearson chi-squared statistic, which can be used

for formal hypothesis tests of model adequacy (see, for example, McCullagh and Nelder,

1989).

3.5 Hierarchical Spatio-Temporal Statistical Models

The previous sections showed that it may be possible to accomplish the goals of spatio-

temporal modeling without using specialized methodology. However, it was also clear from

those examples that there are some serious limitations with the standard methodology. In
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particular, our methods should be able to include measurement uncertainty explicitly, they

should have the ability to predict at locations in time or space, and they should allow us to

perform parameter inference when there are dependent errors. In the remainder of this book

we shall describe models that can deal with these problems.

To put our spatio-temporal statistical models into perspective, we consider a hierarchical

spatio-temporal model that includes at least two stages. Specifically,

observations = true process + observation error, (3.14)

true process = regression component + dependent random process, (3.15)

where (3.14) and (3.15) are the first two stages of the hierarchical-statistical-model

paradigm presented in Chapter 1. There are two general approaches to modeling the last

term in (3.15): the descriptive approach and the dynamic approach; see Section 1.2.1. The

descriptive approach is considered in Chapter 4 and offers a more traditional perspective.

In that case, the dependent random process in (3.15) is defined in terms of the first-order

and second-order moments (means, variances, and covariances) of its marginal distribu-

tion. This framework is not particularly concerned with the underlying causal structure that

leads to dependence in the random process. Rather, it is most useful for the first two goals

presented in Section 1.2: spatio-temporal prediction and parameter inference.

In contrast, we consider the dynamic approach in Chapter 5. In that case, the modeling

effort is focused on conditional distributions that describe the evolution of the dependent

random process in time; it is most useful for the third goal – forecasting (but also can be used

for the other two goals). We note that the conditional perspective can also be considered in

the context of mixed-effects descriptive models, with or without a dynamic specification,

as we discuss in Section 4.4.

3.6 Chapter 3 Wrap-Up

The primary purpose of this chapter was to discuss in detail the three goals of spatio-

temporal statistical modeling: predicting at a new location in space given spatio-temporal

data; doing parameter inference with spatio-temporal data; and forecasting a new value at

a future time. We have also emphasized the importance of quantifying the uncertainty in

our predictions, parameter estimates, and forecasts. We showed that deterministic methods

for spatio-temporal prediction are sensible in that they typically follow Tobler’s law and

give more weight to nearby observations in space and time; however, they do not provide

direct estimates of the prediction uncertainty. We then showed that one could use a (lin-

ear) regression model with spatio-temporal data and that, as long as the residuals do not

have spatio-temporal dependence, it is easy to obtain statistically optimal predictions and,

potentially, statistically optimal forecasts. With respect to parameter inference, we showed

that the linear-regression approach is again relevant but that our inference can be mislead-

ing in the presence of unmodeled extra variation, dependent errors, multicollinearity, and

confounding. Finally, we showed that standard generalized linear models or generalized
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additive models can be used for many problems with non-Gaussian data. But again, with-

out random effects to account for extra variation and dependence, these models are likely

to give inappropriate prediction uncertainty and inferences.

The methods presented in this chapter are very common throughout the literature, and

the references provided in the chapter are excellent places to find additional background

material. Of course, topics such as interpolation, regression, and generalized linear models

are discussed in a wide variety of textbooks and online resources, and the interested reader

should have no trouble finding additional references.

In the next two chapters, we explore what to do when there is spatio-temporal depend-

ence beyond what can be explained by covariates. We shall cover descriptive models that

focus more on the specification of spatio-temporal covariance functions in Chapter 4, and

dynamic models that focus explicitly on the evolution of spatial processes through time in

Chapter 5. These two chapters together make up the “protein” in the book, and the material

in them will have a decidedly more technical flavor. More powerful, more flexible, but

more complex, dependent processes require a higher technical level than is usually found in

introductory statistical-modeling courses. That said, we maintain an emphasis on describing

the motivations for our methods and on their implementation in the associated R Labs.

Lab 3.1: Deterministic Prediction Methods

Inverse Distance Weighting

Inverse distance weighting (IDW) is one of the simplest deterministic spatio-temporal inter-

polation methods. It can be implemented easily in R using the function idw in the package

gstat, or from scratch, and in this Lab we shall demonstrate both approaches. We require

the following packages.

library("dplyr")

library("fields")

library("ggplot2")

library("gstat")

library("RColorBrewer")

library("sp")

library("spacetime")

library("STRbook")

We consider the maximum temperature field in the NOAA data set for the month of

July 1993. These data can be obtained from the data NOAA_df_1990 using the filter

function in dplyr.

data("NOAA_df_1990", package = "STRbook")

Tmax <- filter(NOAA_df_1990, # subset the data
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proc == "Tmax" & # only max temperature

month == 7 & # July

year == 1993) # year of 1993

We next construct the three-dimensional spatio-temporal prediction grid using

expand.grid. We consider a 20 × 20 grid in longitude and latitude and a sequence

of 6 days regularly arranged in the month.

pred_grid <- expand.grid(lon = seq(-100, -80, length = 20),

lat = seq(32, 46, length = 20),

day = seq(4, 29, length = 6))

The function in gstat that does the inverse distance weighting, idw, takes the following

arguments: formula, which identifies the variable to interpolate; locations, which

identifies the spatial and temporal variables; data, which can take the data in a data frame;

newdata, which contains the space-time grid locations at which to interpolate; and idp,

which corresponds to α in (3.3). The larger α (idp) is, the less the smoothing. This

parameter is typically set using cross-validation, which we explore later in this Lab; here

we fix α = 5. We run idw below with the variable Tmax, omitting data on 14 July 1993.

Tmax_no_14 <- filter(Tmax, !(day == 14)) # remove day 14

Tmax_July_idw <- idw(formula = z ~ 1, # dep. variable

locations = ~ lon + lat + day, # inputs

data = Tmax_no_14, # data set

newdata = pred_grid, # prediction grid

idp = 5) # inv. dist. pow.

The output Tmax_July_idw contains the fields lon, lat, day, and var1.pred cor-

responding to the IDW interpolation over the prediction grid. This data frame can be plotted

using ggplot2 commands as follows.

ggplot(Tmax_July_idw) +

geom_tile(aes(x = lon, y = lat,

fill = var1.pred)) +

fill_scale(name = "degF") + # attach color scale

xlab("Longitude (deg)") + # x-axis label

ylab("Latitude (deg)") + # y-axis label

facet_wrap(~ day, ncol = 3) + # facet by day

coord_fixed(xlim = c(-100, -80),

ylim = c(32, 46)) + # zoom in

theme_bw() # B&W theme

A similar plot to the one above, but produced using stplot instead, is shown in the left

panel of Figure 3.2. Notice how the day with missing data is “smoothed out” when com-

pared to the others. As an exercise, you can redo IDW including the 14 July 1993 in the

data set, and observe how the prediction changes for that day.
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Implementing IDW from First Principles

It is often preferable to implement simple algorithms, like IDW, from scratch, as doing so

increases code versatility (e.g., it facilitates implementation of a cross-validation study).

Reducing dependence on other packages will also help the code last the test of time (as it

becomes immune to package changes).

We showed that IDW is a kernel predictor and yields the kernel weights given by (3.3).

To construct these kernel weights we first need to find the distances between all prediction

locations and data locations, take their reciprocals and raise them to the power (idp) of α.

Pairwise distances between two arbitrary sets of points are most easily computed using the

rdist function in the package fields. Since we wish to generate these kernel weights for

different observation and prediction sets and different bandwidth parameters, we create a

function Wt_IDW that generates the required kernel-weights matrix.

pred_obs_dist_mat <- rdist(select(pred_grid, lon, lat, day),

select(Tmax_no_14, lon, lat, day))

Wt_IDW <- function(theta, dist_mat) 1/dist_mat^theta

Wtilde <- Wt_IDW(theta = 5, dist_mat = pred_obs_dist_mat)

The matrix Wtilde now contains all the w̃ij described in (3.3); that is, the (k, l)th element

in Wtilde contains the distance between the kth prediction location and the lth observation

location, raised to the power of 5, and reciprocated.

Next, we compute the weights in (3.2). These are just the kernel weights normalized

by the sum of all kernel weights associated with each prediction location. Normalizing the

weights at every location can be done easily using rowSums in R.

Wtilde_rsums <- rowSums(Wtilde)

W <- Wtilde/Wtilde_rsums

The resulting matrix W is the weight matrix, sometimes known as the influence matrix. The

predictions are then given by (3.1), which is just the influence matrix multiplied by the data.

z_pred_IDW <- as.numeric(W %*% Tmax_no_14$z)

One can informally verify the computed predictions by comparing them to those given by

idw in gstat. We see that the two results are very close; numerical mismatches of this

order of magnitude are likely to arise from the slightly different way the IDW weights are

computed in gstat (and it is possible that you get different, but still small, mismatches on

your computer).

summary(Tmax_July_idw$var1.pred - z_pred_IDW)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -1.62e-12 -1.85e-13 0.00e+00 -1.00e-15 1.99e-13 1.16e-12
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Generic Kernel Smoothing and Cross-Validation

One advantage of implementing IDW from scratch is that now we can change the kernel

function to whatever we want and compare predictions from different kernel functions. We

implement a kernel smoother below, where the kernel is a Gaussian radial basis function

given by (3.4) with θ = 0.5.

theta <- 0.5 # set bandwidth

Wt_Gauss <- function(theta, dist_mat) exp(-dist_mat^2/theta)

Wtilde <- Wt_Gauss(theta = 0.5, dist_mat = pred_obs_dist_mat)

Wtilde_rsums <- rowSums(Wtilde) # normalizing factors

W <- Wtilde/Wtilde_rsums # normalized kernel weights

z_pred2 <- W %*% Tmax_no_14$z # predictions

The vector z_pred2 can be assigned to the prediction grid pred_grid and plotted

using ggplot2 as shown above. Note that the the predictions are similar, but not identical, to

those produced by IDW. But which predictions are the best in terms of squared prediction

error? A method commonly applied to assess goodness of fit is known as cross-validation

(CV). CV also allows us to choose bandwidth parameters (i.e., α or θ) that are optimal for

a given data set. See Section 6.1.3 for more discussion on CV.

To carry out CV, we need to fit the model using a subset of the data (known as the

training set), predict at the data locations that were omitted (known as the validation set),

and compute a discrepancy, usually the squared error, between the predicted and observed

values. If we leave one data point out at a time, the procedure is known as leave-one-

out cross-validation (LOOCV). We denote the sum of the discrepancies for a particular

bandwidth parameter θ as the LOOCV score, CV(m)(θ) (note that m, here, is the number

of folds used in the cross-validation; in LOOCV, the number of folds is equal the number

of data points, m).

The LOOCV for simple predictors, like kernel smoothers, can be computed analytically

without having to refit; see Appendix B. Since the data set is reasonably small, it is feasible

here to do the refitting with each data point omitted (since each prediction is just an inner

product of two vectors). The simplest way to do LOOCV in this context is to compute

the pairwise distances between all observation locations and the associated kernel-weight

matrix, and then to select the appropriate rows and columns from the resulting matrix to do

prediction at a left-out observation; this is repeated for every observation.
The distances between all observations are computed as follows.

obs_obs_dist_mat <- rdist(select(Tmax, lon, lat, day),

select(Tmax, lon, lat, day))

A function that computes the LOOCV score is given as follows.
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LOOCV_score <- function(Wt_fun, theta, dist_mat, Z) {

Wtilde <- Wt_fun(theta, dist_mat)

CV <- 0

for(i in 1:length(Z)) {

Wtilde2 <- Wtilde[i,-i]

W2 <- Wtilde2 / sum(Wtilde2)

z_pred <- W2 %*% Z[-i]

CV[i] <- (z_pred - Z[i])^2

}

mean(CV)

}

The function takes as arguments the kernel function that computes the kernel weights

Wt_fun; the kernel bandwidth parameter theta; the full distance matrix dist_mat; and

the data Z. The function first constructs the kernel-weights matrix for the given bandwith.

Then, for the ith observation, it selects the ith row and excludes the ith column from the

kernel-weights matrix and assigns the resulting vector to Wtilde2. This vector contains

the kernel weights for the ith observation location (which is now a prediction location) with

the weights contributed by this ith observation removed. This vector is normalized and

then cross-multiplied with the data to yield the prediction. This is done for all i = 1, . . . , n,

and then the mean of the squared errors is returned. To see which of the two predictors is

“better,” we now simply call LOOCV_score with the two different kernel functions and

bandwidths.

LOOCV_score(Wt_fun = Wt_IDW,

theta = 5,

dist_mat = obs_obs_dist_mat,

Z = Tmax$z)

## [1] 7.78

LOOCV_score(Wt_fun = Wt_Gauss,

theta = 0.5,

dist_mat = obs_obs_dist_mat,

Z = Tmax$z)

## [1] 7.53

Clearly the Gaussian kernel smoother has performed marginally better than IDW in

this case. But how do we know the chosen kernel bandwidths are suitable? Currently we

do not, as these were set by simply “eye-balling” the predictions and assessing visually

whether they looked suitable or not. An objective way to set the bandwidth parameters is

to put them equal to those values that minimize the LOOCV scores. This can be done by
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simply computing LOOCV_score for a set, say 21, of plausible bandwidths and finding

the minimum. We do this below for both IDW and the Gaussian kernel.

theta_IDW <- seq(4, 6, length = 21)

theta_Gauss <- seq(0.1, 2.1, length = 21)

CV_IDW <- CV_Gauss <- 0

for(i in seq_along(theta_IDW)) {

CV_IDW[i] <- LOOCV_score(Wt_fun = Wt_IDW,

theta = theta_IDW[i],

dist_mat = obs_obs_dist_mat,

Z = Tmax$z)

CV_Gauss[i] <- LOOCV_score(Wt_fun = Wt_Gauss,

theta = theta_Gauss[i],

dist_mat = obs_obs_dist_mat,

Z = Tmax$z)

}

The plots showing the LOOCV scores as a function of α and θ for the IDW and Gaussian

kernels, respectively (Figure 3.3), exhibit clear minima when plotted, which is very typical

of plots of this kind.

par(mfrow = c(1,2))

plot(theta_IDW, CV_IDW,

xlab = expression(alpha),

ylab = expression(CV[(m)](alpha)),

ylim = c(7.4, 8.5), type = 'o')

plot(theta_Gauss, CV_Gauss,

xlab = expression(theta),

ylab = expression(CV[(m)](theta)),

ylim = c(7.4, 8.5), type = 'o')

The optimal inverse-power and minimum LOOCV score for IDW are

theta_IDW[which.min(CV_IDW)]

## [1] 5

min(CV_IDW)

## [1] 7.78

The optimal bandwidth and minimum LOOCV score for the Gaussian kernel smoother are
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theta_Gauss[which.min(CV_Gauss)]

## [1] 0.6

min(CV_Gauss)

## [1] 7.47

Our choice of α = 5 was therefore (sufficiently close to) optimal when doing IDW, while a

bandwidth of θ = 0.6 is better for the Gaussian kernel than our initial choice of θ = 0.5. It

is clear from the results that the Gaussian kernel predictor with θ = 0.6 has, in this example,

provided superior performance to IDW with α = 5, in terms of mean-squared-prediction

error.

Lab 3.2: Trend Prediction

There is considerable in-built functionality in R for linear regression and for carrying out

hypothesis tests associated with linear models. Several packages have also been written to

extend functionality, and in this Lab we shall make use of leaps, which contains function-

ality for stepwise regression; lmtest, which contains a suite of tests to carry out on fitted

linear models; and nlme, which is a package generally used for fitting nonlinear mixed

effects models (but we shall use it to fit linear models in the presence of correlated errors).

library("leaps")

library("lmtest")

library("nlme")

In addition, we use ape, which is one of several packages that contain functionality for

testing spatial or spatio-temporal independence with Moran’s I statistic; and we use FRK,

which contains functionality for constructing the basis functions shown in Figure 3.6. We

also make use of broom and purrr to easily carry out multiple tests on groups within our

data set.

library("ape")

library("broom")

library("FRK")

library("purrr")

We need the following for plotting purposes.

library("lattice")

library("ggplot2")

library("RColorBrewer")
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We also need the usual packages for data wrangling and handling of spatial/spatio-temporal

objects as in the previous Labs.

library("dplyr")

library("gstat")

library("sp")

library("spacetime")

library("STRbook")

library("tidyr")

Fitting the Model

For this Lab we again consider the NOAA data set, specifically the maximum temperature

data for the month of July 1993. These data can be extracted as follows.

data("NOAA_df_1990", package = "STRbook")

Tmax <- filter(NOAA_df_1990, # subset the data

proc == "Tmax" & # only max temperature

month == 7 & # July

year == 1993) # year of 1993

The linear model we fit has the form (3.5), with the list of basis functions given in

Section 3.2. The set of basis functions can be constructed using the function auto_basis

in FRK. The function takes as arguments data, which is a spatial object; nres, which

is the number of “resolutions” to construct; and type, which indicates the type of basis

function to use. Here we consider a single resolution of the Gaussian radial basis function;

see Figure 3.6.

G <- auto_basis(data = Tmax[,c("lon","lat")] %>% # Take Tmax

SpatialPoints(), # To sp obj

nres = 1, # One resolution

type = "Gaussian") # Gaussian BFs

These basis functions evaluated at data locations are then the covariates we seek for

fitting the data. The functions are evaluated at any arbitrary location using the function

eval_basis. This function requires the locations as a matrix object, and it returns the

evaluations as an object of class Matrix, which can be easily converted to a matrix as

follows.

S <- eval_basis(basis = G, # basis functions

s = Tmax[,c("lon","lat")] %>% # spat locations

as.matrix()) %>% # conv. to matrix

as.matrix() # results as matrix

colnames(S) <- paste0("B", 1:ncol(S)) # assign column names
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When fitting the linear model we shall use the convenient notation “.” to denote “all

variables in the data frame” as covariates. This is particularly useful when we have many

covariates, such as the 12 basis functions above. Therefore, we first remove all variables

(except the field id that we shall omit manually later) that we do not wish to include in the

model, and we save the resulting data frame as Tmax2.

Tmax2 <- cbind(Tmax, S) %>% # append S to Tmax

select(-year, -month, -proc, # and remove vars we

-julian, -date) # will not be using in

# the model

As we did in Lab 3.1, we also remove 14 July 1993 to see how predictions on this day are

affected, given that we have no data on that day.

Tmax_no_14 <- filter(Tmax2, !(day == 14)) # remove day 14

We now fit the linear model using lm. The formula we use is

z ~ (lon + lat + day)^2 + . which indicates that we have as covariates

longitude, latitude, day, and all the interactions between them, as well as the other

covariates in the data frame (the 12 basis functions) without interactions.

Tmax_July_lm <- lm(z ~ (lon + lat + day)^2 + ., # model

data = select(Tmax_no_14, -id)) # omit id

The results of this fit can be viewed using summary. Note that latitude is no longer consid-

ered a significant effect, largely because of the presence of the latitude-by-day interaction

in the model, which is considered significant. The output from summary corresponds to

what is shown in Table 3.1.

Tmax_July_lm %>% summary()

##

## Call:

## lm(formula = z ~ (lon + lat + day)^2 + ., data = select(Tmax_no_14,

## -id))

##

## Residuals:

## Min 1Q Median 3Q Max

## -17.51 -2.48 0.11 2.66 14.17

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 192.24324 97.85413 1.96 0.04953 *
## lon 1.75692 1.08817 1.61 0.10649

## lat -1.31740 2.55563 -0.52 0.60624
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## day -1.21646 0.13355 -9.11 < 2e-16 ***
## B1 16.64662 4.83240 3.44 0.00058 ***
## B2 18.52816 3.05608 6.06 1.5e-09 ***
## B3 -6.60690 3.17176 -2.08 0.03731 *
## B4 30.54536 4.36959 6.99 3.2e-12 ***
## B5 14.73915 2.74687 5.37 8.5e-08 ***
## B6 -17.54118 3.42308 -5.12 3.1e-07 ***
## B7 28.47220 3.55190 8.02 1.4e-15 ***
## B8 -27.34815 3.16432 -8.64 < 2e-16 ***
## B9 -10.23478 4.45673 -2.30 0.02170 *
## B10 10.55823 3.32737 3.17 0.00152 **
## B11 -22.75766 3.53251 -6.44 1.3e-10 ***
## B12 21.86438 4.81294 4.54 5.7e-06 ***
## lon:lat -0.02602 0.02823 -0.92 0.35675

## lon:day -0.02270 0.00129 -17.62 < 2e-16 ***
## lat:day -0.01903 0.00188 -10.15 < 2e-16 ***
## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 4.22 on 3970 degrees of freedom

## Multiple R-squared: 0.702,Adjusted R-squared: 0.701

## F-statistic: 520 on 18 and 3970 DF, p-value: <2e-16

Correlated Errors

As we show later in this Lab, there is clearly correlation in the residuals, indicating that

the fixed effects are not able to explain the spatio-temporal variability in the data. If we

knew the spatio-temporal covariance function of these errors, we could then use generalized

least squares to fit the model. For example, if we knew that the covariance function was

a Gaussian function, isotropic, and with a range of 0.5 (see Chapter 4 for more details on

covariance functions), then we could fit the model as follows.

Tmax_July_gls <- gls(z ~ (lon + lat + day)^2 + .,

data = select(Tmax_no_14, -id),

correlation = corGaus(value = 0.5,

form = ~ lon + lat + day,

fixed = TRUE))

Results of the linear fitting can be seen using summary. Note that the estimated coefficients

are quite similar to those using linear regression, but the standard errors are larger. The

output from summary should correspond to what is shown in Table 3.1.
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Stepwise Selection

Stepwise selection is a procedure used to find a parsimonious model (where parsimony

refers to a model with as few parameters as possible for a given criterion) from a large

selection of explanatory variables, such that each variable is included or excluded in a step.

In the simplest of cases, a step is the introduction of a variable (always the case in forward

selection) or the removal of a variable (always the case in backward selection).

The function step takes as arguments the initial (usually the intercept) model as an

lm object, the full model as its scope and, if direction = "forward", starts from

an intercept model and at each step introduces a new variable that minimizes the Akaike

information criterion (AIC) (see Section 6.4.4) of the fitted model. The following for loop

retrieves the fitted model for each step of the stepwise AIC forward-selection method.

Tmax_July_lm4 <- list() # initialize

for(i in 0:4) { # for four steps (after intercept model)

## Carry out stepwise forward selection for i steps

Tmax_July_lm4[[i+1]] <- step(lm(z ~ 1,

data = select(Tmax_no_14, -id)),

scope = z ~(lon + lat + day)^2 + .,

direction = 'forward',

steps = i)

}

Each model in the list can be analyzed using summary, as above.

Notice from the output of summary that Tmax_July_lm4[[5]] contains the co-

variate lon whose effect is not significant. This is fairly common with stepwise AIC pro-

cedures. One is more likely to include covariates whose effects are significant when mini-

mizing the residual sum of squares at each step. This can be carried out using the function

regsubsets from the leaps package, which can be called as follows.

regfit.full = regsubsets(z ~ 1 + (lon + lat + day)^2 + ., # model

data = select(Tmax_no_14, -id),

method = "forward",

nvmax = 4) # 4 steps

All information from the stepwise-selection procedure is available in the object returned by

the summary function.

regfit.summary <- summary(regfit.full)

You can type regfit.summary to see which covariates were selected in each step of the

algorithm. The outputs from step and regsubsets are shown in Tables 3.2 and 3.3,

respectively.
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Multicollinearity

It is fairly common in spatio-temporal modeling to have multicollinearity, both in space and

in time. For example, in a spatial setting, average salary might be highly correlated with

unemployment levels, but both could be included in a model to explain life expectancy. It

is beyond the scope of this book to discuss methods to deal with multicollinearity, but it is

important to be aware of its implications.

Consider, for example, a setting where we have a 13th basis function that is simply the

5th basis function corrupted by some noise.

set.seed(1) # Fix seed for reproducibility

Tmax_no_14_2 <- Tmax_no_14 %>%

mutate(B13 = B5 + 0.01*rnorm(nrow(Tmax_no_14)))

If we fit the same linear model, but this time we include the 13th basis function, then the

effects of both the 5th and the 13th basis functions are no longer considered significant at

the 1% level, although the effect of the 5th basis function was considered very significant

initially (without the 13th basis function being present).

Tmax_July_lm3 <- lm(z ~ (lon + lat + day)^2 + .,

data = Tmax_no_14_2 %>%

select(-id))

summary(Tmax_July_lm3)

##

## Call:

## lm(formula = z ~ (lon + lat + day)^2 + ., data = Tmax_no_14_2 %>%

## select(-id))

##

## Residuals:

## Min 1Q Median 3Q Max

## -17.787 -2.495 0.103 2.674 14.318

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 195.36509 97.81955 2.00 0.04587 *
## lon 1.78547 1.08775 1.64 0.10079

## lat -1.41413 2.55484 -0.55 0.57995

## day -1.21585 0.13349 -9.11 < 2e-16 ***
## B1 16.67581 4.83018 3.45 0.00056 ***
## B2 18.37950 3.05544 6.02 2.0e-09 ***
## B3 -6.47093 3.17092 -2.04 0.04135 *
## B4 30.30399 4.36900 6.94 4.7e-12 ***
## B5 0.60329 7.09215 0.09 0.93221

## B6 -17.32202 3.42300 -5.06 4.4e-07 ***
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## B7 28.13555 3.55367 7.92 3.1e-15 ***
## B8 -27.00216 3.16690 -8.53 < 2e-16 ***
## B9 -10.18176 4.45474 -2.29 0.02233 *
## B10 10.37967 3.32686 3.12 0.00182 **
## B11 -22.41943 3.53434 -6.34 2.5e-10 ***
## B12 21.66451 4.81160 4.50 6.9e-06 ***
## B13 13.99856 6.47562 2.16 0.03070 *
## lon:lat -0.02694 0.02822 -0.95 0.33981

## lon:day -0.02263 0.00129 -17.56 < 2e-16 ***
## lat:day -0.01888 0.00188 -10.07 < 2e-16 ***
## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 4.22 on 3969 degrees of freedom

## Multiple R-squared: 0.703,Adjusted R-squared: 0.701

## F-statistic: 494 on 19 and 3969 DF, p-value: <2e-16

The introduction of the 13th basis function will not adversely affect the predictions and

prediction standard errors, but it does compromise our ability to correctly interpret the fixed

effects. Multicollinearity will result in a high positive or negative correlation between the

estimators of the regression coefficients. For example, the correlation matrix of the estima-

tors of the fixed effects corresponding to these two basis functions is given by

vcov(Tmax_July_lm3)[c("B5", "B13"),c("B5", "B13")] %>%

cov2cor()

## B5 B13

## B5 1.000 -0.922

## B13 -0.922 1.000

Analyzing the Residuals

Having fitted a spatio-temporal model, it is good practice to check the residuals. If they

are still spatio-temporally correlated, then our model will not have captured adequately the

spatial and temporal variability in the data. We extract the residuals from our linear model

using the function residuals.

Tmax_no_14$residuals <- residuals(Tmax_July_lm)

Now let us plot the residuals of the last eight days. Notice how these residuals, shown in

the bottom panel of Figure 3.9, are strongly spatially correlated. The triangles in the image

correspond to the two stations whose time series of residuals we shall analyze later.
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g <- ggplot(filter(Tmax_no_14, day %in% 24:31)) +

geom_point(aes(lon, lat, colour = residuals)) +

facet_wrap(~ day, ncol=4) +

col_scale(name = "degF") +

geom_point(data = filter(Tmax_no_14,day %in% 24:31 &

id %in% c(3810, 3889)),

aes(lon, lat), colour = "black",

pch = 2, size = 2.5) +

theme_bw()

print(g)

We can use Moran’s I test, described in Technical Note 3.2, to test for spatial dependence

in the residuals on each day. In the following code, we take each day in our data set,

compute the distances, form the weight matrix, and carry out Moran’s I test using the

function Moran.I from the package ape.

P <- list() # init list

days <- c(1:13, 15:31) # set of days

for(i in seq_along(days)) { # for each day

Tmax_day <- filter(Tmax_no_14,

day == days[i]) # filter by day

station.dists <- Tmax_day %>% # take the data

select(lon, lat) %>% # extract coords.

dist() %>% # comp. dists.

as.matrix() # conv. to matrix

station.dists.inv <- 1/station.dists # weight matrix

diag(station.dists.inv) <- 0 # 0 on diag

P[[i]] <- Moran.I(Tmax_day$residuals, # run Moran's I

station.dists.inv) %>%

do.call("cbind", .) # conv. to df

}

The object P is a list of single-row data frames that can be collapsed into a single data frame

by calling do.call and proceeding to row-bind the elements of each list item together.

We print the first six records of the resulting data frame below.

do.call("rbind", P) %>% head()

## observed expected sd p.value

## [1,] 0.272 -0.00758 0.0124 0

## [2,] 0.226 -0.00758 0.0124 0

## [3,] 0.211 -0.00758 0.0124 0

## [4,] 0.163 -0.00758 0.0124 0
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## [5,] 0.258 -0.00758 0.0124 0

## [6,] 0.122 -0.00758 0.0123 0

The maximum p-value from the 30 tests is 8.04× 10−6, which is very small. Since we

are in a multiple-hypothesis setting, we need to control the familywise error rate and, for a

level of significance α, reject the null hypothesis of no correlation only if the p-value is less

than c(α) (< α), where c(·) is a correction function. In this case, even the very conservative

Bonferroni correction (for which c(α) = α/T , where T is the number of time points) will

result in rejecting the null hypothesis at each time point.

It is straightforward to extend Moran’s I test to the spatio-temporal setting, as one need

only extend the concept of “spatial distance” to “spatio-temporal distance.” We are faced

with the usual problem of how to appropriately scale time to make a Euclidean distance

across space and time have a realistic interpretation. One way to do this is to fit a depend-

ence model that allows for scaling in time, and subsequently scale time by an estimate of

the scaling factor prior to computing the Euclidean distance. We shall work with one such

model, which uses an anisotropic covariance function, in Chapter 4. For now, as we did with

IDW, we do not scale time and compute distances on the spatio-temporal domain (which

happens to be reasonable for these data).

station.dists <- Tmax_no_14 %>% # take the data

select(lon, lat, day) %>% # extract coordinates

dist() %>% # compute distances

as.matrix() # convert to matrix

We now need to compute the weights from the distances, set the diagonal to zero and call

Moran.I.

station.dists.inv <- 1/station.dists

diag(station.dists.inv) <- 0

Moran.I(Tmax_no_14$residuals, station.dists.inv)$p.value

## [1] 0

Unsurprisingly, given what we saw when analyzing individual time slices, the p-value is

very small, strongly suggesting that there is spatio-temporal dependence in the data.

When the data are regularly spaced in time, as is the case here, one may also look at the

“temporal” residuals at some location and test for temporal correlation in these residuals

using the Durbin–Watson test. For example, consider the maximum temperature (Tmax)

residuals at stations 3810 and 3889.

TS1 <- filter(Tmax_no_14, id == 3810)$residuals

TS2 <- filter(Tmax_no_14, id == 3889)$residuals
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These residuals can be easily plotted using base R graphics as follows; see the top panel of

Figure 3.9.

par(mar=c(4, 4, 1, 1))

plot(TS1, # Station 3810 residuals

xlab = "day of July 1993",

ylab = "residuals (degF)",

type = 'o', ylim = c(-8, 7))

lines(TS2, # Station 3889 residuals

xlab = "day of July 1993",

ylab = "residuals (degF)",

type = 'o', col = "red")

Note that there is clear temporal correlation in the residuals; that is, residuals close to each

other in time tend to be more similar than residuals further apart. It is also interesting to

note that the residuals are correlated between the stations; that is, at the same time point, the

residuals at both stations are more similar than at different time points. This is due to the

spatial correlation in the residuals that was tested for above (these two stations happen to be

quite close to each other; recall the previous image of the spatial residuals). One may also

look at the correlogram (the empirical autocorrelation function) of the residuals by typing

acf(TS1) and acf(TS2), respectively. From these plots it can be clearly seen that there

is significant lag-1 correlation in both these residual time series.

Now let us proceed with carrying out a Durbin–Watson test for the residuals at every

station. This can be done using a for loop as we did with Moran’s I test; however, we

shall now introduce a more sophisticated way of carrying out multiple tests and predictions

on groups of data within a data frame, using the packages tidyr, purrr, and broom, which

will also be used in Lab 3.3.

In Lab 2.1 we investigated data wrangling techniques for putting data that are in a data

frame into groups using group_by, and then we performed an operation on each of those

groups using summarise. The grouped data frame returned by group_by is simply the

original frame with each row associated with a group. A more elaborate representation of

these data is in a nested data frame, where we have a data frame containing one row for

each group. The “nested” property comes from the fact that we may have a data frame,

conventionally under the field name “data,” for each group. For example, if we group

Tmax_no_14 by lon and lat, we obtain the following first three records.

nested_Tmax_no_14 <- group_by(Tmax_no_14, lon, lat) %>% nest()

head(nested_Tmax_no_14, 3)

## # A tibble: 3 x 3

## lon lat data

## <dbl> <dbl> <list>

## 1 -81.4 39.3 <tibble [30 x 16]>
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## 2 -81.4 35.7 <tibble [30 x 16]>

## 3 -88.9 35.6 <tibble [30 x 16]>

Note the third column, data, which is a column of tibbles (which, for the purposes of

this book, should be treated as sophisticated data frames). Next we define a function that

takes the data frame associated with a single group, carries out the test (in this case the

Durbin–Watson test), and returns the results. The function dwtest takes an R formula as

the first argument and the data as the second argument. In this case, we test for autocorre-

lation in the residuals after removing a temporal (constant) trend and by using the formula

residuals ~ 1.

dwtest_one_station <- function(data)

dwtest(residuals ~ 1, data = data)

Calling dwtest_one_station for the data in the first record will carry out the test at

the first station, in the second record at the second station, and so on. For example,

dwtest_one_station(nested_Tmax_no_14$data[[1]])

carries out the Durbin–Watson test on the residuals at the first station.

To carry out the test on each record in the nested data frame, we use the function map

from the package purrr. For example, the command

map(nested_Tmax_no_14$data, dwtest_one_station) %>% head()

shows the test results for the first six stations. These results can be assigned to another

column within our nested data frame using mutate. These results are of class htest

and not easy to analyze or visualize in their native form. We therefore use the function

tidy from the package broom to extract the key information from the test (in this case

the statistic, the p-value, the method, and the hypothesis) and put it into a data frame. For

example,

dwtest_one_station_tidy <- nested_Tmax_no_14$data[[1]] %>%

dwtest_one_station() %>%

tidy()

tidies up the results at the first station. The first three columns of the returned data are

dwtest_one_station_tidy[, 1:3]

## # A tibble: 1 x 3

## statistic p.value method

## <dbl> <dbl> <chr>

## 1 0.982 0.00122 Durbin-Watson test
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To assign the test results to each record in the nested data frame as added fields (instead

of as another data frame), we then use the function unnest. In summary, the code

Tmax_DW_no_14 <- nested_Tmax_no_14 %>%

mutate(dwtest = map(data, dwtest_one_station)) %>%

mutate(test_df = map(dwtest, tidy)) %>%

unnest(test_df)

provides all the information we need. The first three records, excluding the last two

columns, are

Tmax_DW_no_14 %>% select(-method, -alternative) %>% head(3)

## # A tibble: 3 x 6

## lon lat data dwtest statistic p.value

## <dbl> <dbl> <list> <list> <dbl> <dbl>

## 1 -81.4 39.3 <tibble [30~ <S3: hte~ 0.982 1.22e-3

## 2 -81.4 35.7 <tibble [30~ <S3: hte~ 0.921 5.86e-4

## 3 -88.9 35.6 <tibble [30~ <S3: hte~ 1.59 1.29e-1

The proportion of p-values below the 5% level of significance divided by the number of

tests (Bonferroni correction) is

mean(Tmax_DW_no_14$p.value < 0.05/nrow(Tmax_DW_no_14)) * 100

## [1] 21.8

This proportion of 21.8% is reasonably high and provides evidence that there is considerable

temporal autocorrelation in the residuals, as expected.

Finally, we can also compute and visualize the empirical spatio-temporal semivario-

gram of the residuals. Recall that in Lab 2.1 we put the maximum temperature data in the

NOAA data set into an STFDF object that we labeled STObj3. We now load these data

and subset the month of July 1993.

data("STObj3", package = "STRbook")

STObj4 <- STObj3[, "1993-07-01::1993-07-31"]

All we need to do is merge Tmax_no_14, which contains the residuals, with the STFDF

object STObj4, so that the empirical semivariogram of the residuals can be computed. This

can be done quickly, and safely, using the function left_join.

STObj4@data <- left_join(STObj4@data, Tmax_no_14)

As in Lab 2.3, we now compute the empirical semivariogram with the function

variogram.

Wikle, C. K., Zammit-Mangion, A., and Cressie, N. (2019), Spatio-Temporal Statistics with R, Boca Raton,

FL: Chapman & Hall/CRC. © 2019 Wikle, Zammit-Mangion, Cressie. https://spacetimewithr.org



124 Spatio-Temporal Statistical Models

vv <- variogram(object = residuals ~ 1, # fixed effect component

data = STObj4, # July data

width = 80, # spatial bin (80 km)

cutoff = 1000, # consider pts < 1000 km apart

tlags = 0.01:6.01) # 0 days to 6 days

The command plot(vv) displays the empirical semivariogram of the residuals, which is

shown in Figure 3.8. This empirical semivariogram is clearly different from that of the

data (Figure 2.17) and has a lower sill, but it suggests that there is still spatial and temporal

correlation in the residuals.

Predictions

Prediction from linear or generalized linear models in R is carried out using the function
predict. As in Lab 3.1, we use the following prediction grid.

pred_grid <- expand.grid(lon = seq(-100, -80, length = 20),

lat = seq(32, 46, length = 20),

day = seq(4, 29, length = 6))

We require all the covariate values at all the prediction locations. Hence, the 12 basis

functions need to be evaluated on this grid. As above, we do this by calling eval_basis

and converting the result to a matrix, which we then attach to our prediction grid.

Spred <- eval_basis(basis = G, # basis functs

s = pred_grid[,c("lon","lat")] %>% # pred locs

as.matrix()) %>% # conv. to matrix

as.matrix() # results as matrix

colnames(Spred) <- paste0("B", 1:ncol(Spred)) # assign col names

pred_grid <- cbind(pred_grid, Spred) # attach to grid

Now that we have all the covariates in place, we can call predict. We supply predict

with the model Tmax_July_lm, the prediction grid, and the argument interval =

"prediction", so that predict returns the prediction intervals.

linreg_pred <- predict(Tmax_July_lm,

newdata = pred_grid,

interval = "prediction")

When predict is called as above, it returns a matrix containing three columns with

names fit, lwr, and upr, which contain the prediction and the lower and upper bounds

of the 95% prediction interval, respectively. Since in this case the prediction interval is

the prediction ± 1.96 times the prediction standard error, we can calculate the prediction

standard error from the given interval as follows.
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## Assign prediction and prediction s.e. to the prediction grid

pred_grid$z_pred <- linreg_pred[,1]

pred_grid$z_err <- (linreg_pred[,3] - linreg_pred[,2]) / (2*1.96)

Plotting the prediction and prediction standard error proceeds in a straightforward fashion

using ggplot2; see Figure 3.7. This is left as an exercise for the reader.

Lab 3.3: Regression Models for Forecasting

In this Lab we fit a simple linear model to every pixel in the SST data set, and we use

these models to predict SST for a month in which we have no SST data. The models will

simply contain an intercept and a single covariate, namely the Southern Oscillation Index

(SOI). The SOI data we use here are supplied with STRbook and were retrieved from

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/SOI/.

For this Lab we need the usual data-wrangling and plotting packages, as well as the

packages broom and purrr for fitting and predicting with multiple models simultaneously.

library("broom")

library("dplyr")

library("ggplot2")

library("STRbook")

library("purrr")

library("tidyr")

In the first section of this Lab we tidy up the data to obtain the SST data frame from

the raw data. You may also skip this section by loading SST_df from STRbook, and

fast-forwarding to the section that is concerned with fitting the data.

data("SST_df", package = "STRbook")

Tidying Up the Data

The first task in this Lab is to wrangle the SST data into a long-format data frame that is

amenable to linear fitting and plotting. Recall from Lab 2.3 that the SST data are provided

in three data frames, one describing the land mask, one containing the SST values in wide

format, and one containing the coordinates.

data("SSTlandmask", package = "STRbook")

data("SSTdata", package = "STRbook")

data("SSTlonlat", package = "STRbook")

We first combine the land mask data with the coordinates data frame.
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lonlatmask_df <- data.frame(cbind(SSTlonlat, SSTlandmask))

names(lonlatmask_df) <- c("lon", "lat", "mask")

Then we form our SST data frame in wide format by attaching SSTdata to the coordinate-

mask data frame.

SSTdata <- cbind(lonlatmask_df, SSTdata)

Finally, we use gather to put the data frame into long format.

SST_df <- gather(SSTdata, date, sst, -lon, -lat, -mask)

Our data frame now contains the SST data, but the date field contains as entries V1,

V2, . . . , which were the names of the columns in SSTdata.

SST_df %>% head(3)

## lon lat mask date sst

## 1 124 -29 1 V1 -0.36289

## 2 126 -29 1 V1 -0.28461

## 3 128 -29 1 V1 -0.19195

We replace this date field with two fields, one containing the month and one containing

the year. We can do this by first creating a mapping table that links V1 to January 1970, V2

to February 1970, and so on, and then merging using left_join.

date_grid <- expand.grid(Month = c("Jan", "Feb", "Mar", "Apr",

"May", "Jun", "Jul", "Aug",

"Sep", "Oct", "Nov", "Dec"),

Year = 1970:2002,

stringsAsFactors = FALSE)

date_grid$date <- paste0("V", 1:396)

SST_df <- left_join(SST_df, date_grid) %>%

select(-date)

For good measure, we also add in the date field again but this time in month–year format.

SST_df$date <- paste(SST_df$Month, SST_df$Year)

SST_df %>% head(3)

## lon lat mask sst Month Year date

## 1 124 -29 1 -0.36289 Jan 1970 Jan 1970

## 2 126 -29 1 -0.28461 Jan 1970 Jan 1970

## 3 128 -29 1 -0.19195 Jan 1970 Jan 1970
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Next, we set SST data that are coincident with land locations to NA:

SST_df$sst<- ifelse(SST_df$mask == 0, SST_df$sst, NA)

Our SST data frame is now in place. The following code plots a series of SSTs leading up

to the 1997 El Niño event; see Figure 3.10.

g <- ggplot(filter(SST_df, Year == 1997 & # subset by month/year

Month %in% c("Apr","Aug","Jun","Oct"))) +

geom_tile(aes(lon, lat,

fill = pmin(sst, 4))) + # clamp SST at 4deg

facet_wrap(~date, dir = "v") + # facet by date

fill_scale(limits = c(-4, 4), # color limits

name = "degC") + # legend title

theme_bw() + coord_fixed() # fix scale and theme

Now we need to add the SOI data to the SST data frame. The SOI time series is available

as a 14-column data frame, with the first column containing the year, the next 12 columns

containing the SOI for each month in the respective year, and the last column containing

the mean SOI for that year. In the following, we remove the annual average from the data

frame, which is in wide format, and then put it into long format using gather.

data("SOI", package = "STRbook")

SOI_df <- select(SOI, -Ann) %>%

gather(Month, soi, -Year)

Finally, we use left_join to merge the SOI data and the SST data.

SST_df <- left_join(SST_df, SOI_df,

by = c("Month", "Year"))

Fitting the Models Pixelwise

In this section we fit linear time-series models to the SSTs in each pixel using data up to

April 1997. We first create a data frame containing the SST data between January 1970 and

April 1997.

SST_pre_May <- filter(SST_df, Year <= 1997) %>%

filter(!(Year == 1997 &

Month %in% c("May", "Jun", "Jul",

"Aug", "Sep", "Oct",

"Nov", "Dec")))
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Next, as in Lab 3.2, we use purrr and broom to construct a nested data frame that contains

a linear model fitted to every pixel. We name the function that fits the linear model at a

single pixel to the data over time as fit_one_pixel.

fit_one_pixel <- function(data)

mod <- lm(sst ~ 1 + soi, data = data)

pixel_lms <- SST_pre_May %>%

filter(!is.na(sst)) %>%

group_by(lon, lat) %>%

nest() %>%

mutate(model = map(data, fit_one_pixel)) %>%

mutate(model_df = map(model, tidy))

The string of commands above describes an operation that is practically identical to what

we did in Lab 3.2. We take the data, filter them to remove missing data, group by pixel,

create a nested data frame, fit a model to each pixel, and extract a data frame containing

information on the linear fit by pixel. The first three records of the nested data frame are as

follows.

pixel_lms %>% head(3)

## # A tibble: 3 x 5

## lon lat data model model_df

## <dbl> <dbl> <list> <list> <list>

## 1 154 -29 <tibble [328 x 6]> <S3: lm> <tibble [2 x 5]>

## 2 156 -29 <tibble [328 x 6]> <S3: lm> <tibble [2 x 5]>

## 3 158 -29 <tibble [328 x 6]> <S3: lm> <tibble [2 x 5]>

To extract the model parameters from the linear-fit data frames, we use unnest:

lm_pars <- pixel_lms %>%

unnest(model_df)

For each pixel, we now have an estimate of the intercept and the effect associated with the

covariate soi, as well as other information such as the p-values.

head(lm_pars, 3)

## # A tibble: 3 x 7

## lon lat term estimate std.error statistic p.value

## <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>

## 1 154 -29 (Inter~ 0.132 0.0266 4.96 1.13e-6

## 2 154 -29 soi 0.0277 0.0223 1.24 2.16e-1

## 3 156 -29 (Inter~ 0.0365 0.0262 1.40 1.64e-1
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We can plot spatial maps of the intercept and the regression coefficient associated with soi

directly. We first merge this data frame with the coordinates data frame using left_join,

which also contains land pixels. In this way, regression coefficients over land pixels are

marked as NA, which is appropriate.

lm_pars <- left_join(lonlatmask_df, lm_pars)

The following code plots the spatial intercept and the spatial regression coefficient associ-

ated with soi; see the top panels of Figure 3.11.

g2 <- ggplot(filter(lm_pars, term == "(Intercept)" | mask == 1)) +

geom_tile(aes(lon, lat, fill = estimate)) +

fill_scale() +

theme_bw() + coord_fixed()

g3 <- ggplot(filter(lm_pars, term == "soi" | mask == 1)) +

geom_tile(aes(lon, lat, fill = estimate)) +

fill_scale() +

theme_bw() + coord_fixed()

Predicting SST Pixelwise

We now use the linear models at the pixel level to predict the SST in October 1997 using the

SOI index for that month. The SOI for that month is extracted from SOI_df as follows.

soi_pred <- filter(SOI_df, Month == "Oct" & Year == "1997") %>%

select(soi)

We next define the function that carries out the prediction at the pixel level. The function

takes a linear model lm and the SOI at the prediction date soi_pred, runs the predict

function for this date, and returns a data frame containing the prediction and the prediction

standard error.

predict_one_pixel <- function(lm, soi_pred) {

predict(lm, # linear model

newdata = soi_pred, # pred. covariates

interval = "prediction") %>% # output intervals

data.frame() %>% # convert to df

mutate(se = (upr-lwr)/(2 * 1.96)) %>% # comp pred. se

select(fit, se) # return fit & se

}

Prediction proceeds at each pixel by calling predict_one_pixel on each row in

our nested data frame pixel_lms.
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SST_Oct_1997 <- pixel_lms %>%

mutate(preds = map(model,

predict_one_pixel,

soi_pred = soi_pred)) %>%

unnest(preds)

We have unnested the preds data frame above to save the fit and prediction standard

error as fields in the SST_Oct_1997 data frame. You can type SST_Oct_1997 %>%

head(3) to have a look at the first three records. It is straightforward to plot the prediction

and prediction standard error from SST_Oct_1997; see the middle and bottom panels of

Figure 3.11. This is left as an exercise for the reader.

Lab 3.4: Generalized Linear Spatio-Temporal Regression

In this Lab we fit a generalized linear spatio-temporal model to yearly counts of Carolina

wren in and around the state of Missouri between 1994 and 2014. These counts are part

of the BBS data set. We need gstat, sp, and spacetime for fitting an empirical semivario-

gram to the residuals, FRK to construct the basis functions (as in Lab 3.2), ape for running

Moran’s I test, and the usual packages for wrangling and plotting.

library("ape")

library("dplyr")

library("FRK")

library("ggplot2")

library("gstat")

library("sp")

library("spacetime")

library("STRbook")

library("tidyr")

Fitting the Model

The Carolina wren counts in the BBS data set, in both wide and long format, are supplied

with STRbook. Here we load the data directly in long format and remove any records that

contain missing observations.

data("MOcarolinawren_long", package = "STRbook")

MOcarolinawren_long <- MOcarolinawren_long %>%

filter(!is.na(cnt))

We use the same covariates to fit these data as we did to fit the maximum temperature,

Tmax, in Lab 3.2. Twelve of these covariates were basis functions constructed using
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auto_basis from the package FRK; see Lab 3.2 for details. The matrix S below then

contains the basis functions evaluated at the Carolina wren observation locations.

G <- auto_basis(data = MOcarolinawren_long[,c("lon","lat")] %>%

SpatialPoints(), # To sp obj

nres = 1, # One resolution

type = "Gaussian") # Gaussian BFs

S <- eval_basis(basis = G, # basis functions

s = MOcarolinawren_long[,c("lon","lat")] %>%

as.matrix()) %>% # conv. to matrix

as.matrix() # conv. to matrix

colnames(S) <- paste0("B", 1:ncol(S)) # assign column names

Next, we attach the basis-function covariate information to the data frame containing

the counts, and remove the fields loc.ID and t, which we will not explicitly use when

fitting the model. We list the first five columns of the first three records of our constructed

data frame Wren_df as follows.

Wren_df <- cbind(MOcarolinawren_long,S) %>%

select(-loc.ID, -t)

Wren_df[1:3, 1:5]

## cnt lat lon year B1

## 1 4 36.8 -89.2 1994 0.00258

## 2 2 36.6 -90.7 1994 0.03551

## 3 8 36.9 -91.7 1994 0.11588

Generalized linear models (GLMs) are fitted in R using the function glm. The function

works similarly to lm, but in addition it requires one to specify the exponential-family

model that is used (in this first instance we consider the Poisson family), as well as the link

function (here we use the log function, which is the canonical link). The glm function is

called as follows (note that we have used the same formula as in Lab 3.2).

Wren_GLM <- glm(cnt ~ (lon + lat + year)^2 + ., # formula

family = poisson("log"), # Poisson + log link

data = Wren_df) # data set

The mean and variance of a random variable that has a Poisson distribution are the

same. In cases where the variance in the data is greater than that suggested by this model,

the data are said to exhibit “over-dispersion.” An estimate of the dispersion is given by the

ratio of the deviance to the total degrees of freedom (the number of data points minus the

number of covariates). In this case the dispersion estimate is
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Wren_GLM$deviance / Wren_GLM$df.residual

## [1] 3.78

which is greater than 1, a sign of over-dispersion.

Another way to obtain an estimate of the disperson parameter (and, to account for it if

present) is to replace poisson with quasipoisson when calling glm, and then type

summary(Wren_GLM). The quasi-Poisson model assumes that the variance is propor-

tional to the mean, and that the constant of the proportionality is the over-dispersion para-

meter. Note from the output of summary that the dispersion parameter is 3.9, which is

close to what we estimated above.
It can be shown that under the null hypothesis of no over-dispersion, the deviance is

approximately chi-squared distributed with degrees of freedom equal to m− p− 1.

Wren_GLM$df.residual

## [1] 764

The observed deviance is

Wren_GLM$deviance

## [1] 2890

The probability of observing such a large or larger deviance under the null hypothesis of no
over-dispersion (i.e., the p-value) is

1 - pchisq(q = Wren_GLM$deviance, df = Wren_GLM$df.residual)

## [1] 0

Therefore, we reject the null hypothesis of no over-dispersion at the usual levels of signi-

ficance (10%, 5%, and 1%). One may use other models in the exponential family, such

as the negative-binomial distribution, to account explicitly for the over-dispersion. For

convenience, in this Lab we proceed with the Poisson family. We use the negative-binomial

distribution in Lab 4.4.

Prediction

As in the other Labs, prediction proceeds through use of the function predict. We first

generate our space-time prediction grid, which is an 80 × 80 × 21 grid in degrees × degrees

× years, covering the observations in space and in time.
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pred_grid <- expand.grid(lon = seq(

min(MOcarolinawren_long$lon) - 0.2,

max(MOcarolinawren_long$lon) + 0.2,

length.out = 80),

lat = seq(

min(MOcarolinawren_long$lat) - 0.2,

max(MOcarolinawren_long$lat) + 0.2,

length.out = 80),

year = 1994:2014)

As in Lab 3.2, we now evaluate the basis functions at the prediction locations.

S_pred <- eval_basis(basis = G, # basis functs

s = pred_grid[,c("lon","lat")] %>% # pred locs

as.matrix()) %>% # conv. to matrix

as.matrix() # as matrix

colnames(S_pred) <- paste0("B", 1:ncol(S_pred)) # assign names

pred_grid <- cbind(pred_grid,S_pred) # attach to grid

In the call to predict below, we specify type = "link" to indicate that we pre-

dict the link function of the response and not the response (analogous to the log-intensity

of the process).

wren_preds <- predict(Wren_GLM,

newdata = pred_grid,

type = "link",

se.fit = TRUE)

The predictions and prediction standard errors of the link function of the response are then

attached to our prediction grid for plotting; see Figure 3.12. Plotting to obtain Figure 3.12

is left as an exercise for the reader.

pred_grid <- pred_grid %>%

mutate(log_cnt = wren_preds$fit,

se = wren_preds$se.fit)

When fitting GLMs, it is good practice to check the deviance residuals and inspect

them for any residual correlation. The default GLM residuals returned by residuals are

deviance residuals.

Wren_df$residuals <- residuals(Wren_GLM)

Interestingly, the plot of the deviance residuals in Figure 3.13 is “noisy,” indicating a lack

of spatial correlation.
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Figure 3.13: The deviance residuals from the fitted GLM between t = 1 (the year 1994)

and t = 21 (2014).

g2 <- ggplot(Wren_df) +

geom_point(aes(lon, lat, colour = residuals)) +

col_scale(name = "residuals") +

facet_wrap(~year, nrow = 3) + theme_bw()

We can test for spatial correlation of the deviance residuals by running Moran’s I test on the

spatial deviance residuals for each year. The code below follows closely that for Moran’s I
test in Lab 3.2 and then summarizes the p-values obtained for each year.

P <- list() # init list

years <- 1994:2014

for(i in seq_along(years)) { # for each day

Wren_year <- filter(Wren_df,

year == years[i]) # filter by year

obs_dists <- Wren_year %>% # take the data

select(lon,lat) %>% # extract coords.

dist() %>% # comp. dists.

as.matrix() # conv. to matrix

obs_dists.inv <- 1/obs_dists # weight matrix

diag(obs_dists.inv) <- 0 # 0 on diag

P[[i]] <- Moran.I(Wren_year$residuals, # run Moran's I

obs_dists.inv) %>%

do.call("cbind", .) # conv. to df
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}

do.call("rbind",P) %>% summary(digits = 2)

## observed expected sd p.value

## Min. :-0.084 Min. :-0.040 Min. :0.025 Min. :0.06

## 1st Qu.:-0.059 1st Qu.:-0.029 1st Qu.:0.028 1st Qu.:0.24

## Median :-0.044 Median :-0.029 Median :0.030 Median :0.42

## Mean :-0.041 Mean :-0.028 Mean :0.031 Mean :0.47

## 3rd Qu.:-0.022 3rd Qu.:-0.025 3rd Qu.:0.033 3rd Qu.:0.68

## Max. : 0.010 Max. :-0.023 Max. :0.041 Max. :0.94

Hence, at the 5% level of significance, the null hypothesis (of no spatial correlation in these

deviance residuals) is not rejected. This was expected from the visualization in Figure 3.13.

More insight can be obtained by looking at the empirical semivariogram of the deviance

residuals. To do this we first construct an STIDF, thereby casting the irregular space-time

data into a spacetime object.

Wren_STIDF <- STIDF(sp = SpatialPoints(

Wren_df[,c("lon","lat")],

proj4string = CRS("+proj=longlat")),

time = as.Date(Wren_df[, "year"] %>%

as.character(),

format = "%Y"),

data = Wren_df)

Then we compute the empirical semivariogram using variogram. We consider time bins

of width 1 year (i.e., of width 52.1429 weeks). Bins specified in units of weeks are required,

as this is the largest temporal unit recognized by variogram .

tlags <- seq(0.01, 52.1429*6 + 0.01, by = 52.1429)

vv <- variogram(object = residuals ~ 1, # fixed effect component

data = Wren_STIDF, # data set

tlags = tlags, # temp. bins

width = 25, # spatial bin (25 km)

cutoff = 150, # use pts < 150 km apart

tunit = "weeks") # time unit

The empirical semivariogram can be plotted using plot(vv). Notice how there is little

evidence of spatial correlation but ample evidence of temporal correlation in the residuals.

(The variance of the differences over a large range of time lags at the same spatial location is

small.) This is a clear sign that a more sophisticated spatio-temporal random-effects model

should be considered for these data.
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Chapter 4

Descriptive Spatio-Temporal

Statistical Models

Chapter 3 is the linchpin for the “two Ds” of spatio-temporal statistical modeling, which are

now upon us in this chapter (the first “D,” namely “descriptive”) and the next chapter (the

second “D,” namely “dynamic”). We hope to have eased you from the free form of spatio-

temporal exploratory data analysis presented in Chapter 2 into the “rigor” needed to build a

coherent statistical model. The independent probability structure assumed in Chapter 3 was

a place-holder for the sorts of probability structures that respect Tobler’s law, discussed in

the previous chapters: in our context, this says that a set of values at nearby spatio-temporal

locations should not be assumed independent. As we shall see, there is a “descriptive” way

(this chapter, Chapter 4) and a “dynamic” way (Chapter 5) to incorporate spatio-temporal

statistical dependence into models.

In this chapter we focus on two of the goals of spatio-temporal modeling given in Chap-

ter 3: prediction at some location in space within the time span of the observations and, to a

lesser extent, parameter inference for spatio-temporal covariates. For both goals we assume

that our observations can be decomposed into a true (latent) spatio-temporal process plus

observation error. We then assume that the true process can be written in terms of spatio-

temporal fixed effects due to covariates plus a spatio-temporally dependent random process.

We call this a descriptive approach because its main concern is to specify (or describe) the

dependence structure in the random process. This is in contrast to the dynamic approach

presented in Chapter 5 that models the evolution of the dependent random process through

time. To implement the prediction and inference approaches discussed herein we must per-

form estimation. We mention the most popular and relevant estimation approaches and

algorithms as they come up, but omit most of the details. The interested reader can explore

these details in the references given in Section 4.6. Finally, we note that these discussions

require a bit more statistical formality and mathematical notation, and so the presentations

in this and the next chapter are at a higher technical level than those in Chapter 3.
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4.1 Additive Measurement Error and Process Models

In this section we describe more formally a two-stage model that considers additive mea-

surement error in a data (observation) model, and a process model that is decomposed into

a fixed- (covariate-) effect term and a random-process term. This general decomposition is

the basis for the models that we present in this and the next chapter.

Recall that at each time t ∈ {t1, . . . , tT } we have mtj observations. With a slight

abuse of notation, we write the number of observations at time tj as mj . The vector of all

observations is then given by

Z = (Z(s11; t1), Z(s21; t1), . . . , Z(sm11; t1), . . . , Z(s1T ; tT ), . . . , Z(smTT ; tT ))
′ .

That is, different numbers of irregular spatial observations are allowed for each time (note

that if there are no observations at a given time, tj , the set of spatial locations is empty for

that time and mj = 0). We seek a prediction at some spatio-temporal location (s0; t0). As

described in Chapter 1, if t0 < tT , so that we have all data available to us, then we are in a

smoothing situation; if we only have data up to time t0 then we are in a filtering situation;

and if t0 > tT then we are in a forecasting situation. We seek statistically optimal pre-

dictions for an underlying latent (i.e., hidden) random spatio-temporal process. We denote

this process by {Y (s; t) : s ∈ Ds, t ∈ Dt}, for spatial location s in spatial domain Ds (a

subset of d-dimensional Euclidean space), and time index t in temporal domain Dt (along

the one-dimensional real line).

More specifically, suppose we represent the data in terms of the latent spatio-temporal

process of interest plus a measurement error. For example,

Z(sij ; tj) = Y (sij ; tj) + ǫ(sij ; tj), i = 1, . . . ,mj ; j = 1, . . . , T, (4.1)

where the errors {ǫ(sij ; tj)} represent iid mean-zero measurement error that is independ-

ent of Y (·; ·) and has variance σ2ǫ . So, in the simple data model (4.1) we assume that

the data are noisy observations of the latent process Y at a finite collection of locations

in the space-time domain, where typically we have not observed data at all locations of

interest. Consequently, we would like to predict the latent value Y (s0; t0) at a spatio-

temporal location (s0; t0) as a function of the data vector represented by Z (or some subset

of these observations), which is of dimension
∑T

j=1mj . To simplify the notation that

follows, we shall sometimes assume that data were observed at the same set of m locations

for each of the T times, in which case Z is of length mT .

Now suppose that the latent process follows the model

Y (s; t) = µ(s; t) + η(s; t), (4.2)

for all (s; t) in our space-time domain of interest (e.g., Ds × Dt), where each component

in (4.2) has a special role to play. In (4.2), µ(s; t) represents the process mean, which is

not random, and η(s; t) represents a mean-zero random process with spatial and temporal
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statistical dependence. Our goal here is to find the optimal linear predictor in the sense

that it minimizes the mean squared prediction error between Y (s0; t0) and our prediction,

which we write as Ŷ (s0; t0). Depending on the problem at hand, we may choose to let

µ(s; t) be: (i) known, (ii) constant but unknown, or (iii) modeled in terms of p covariates,

µ(s; t) = x(s; t)′β, where the p-dimensional vector of parameters β is unknown. In the

context of the descriptive methods considered in this chapter, these choices result in spatio-

temporal (S-T) (i) simple, (ii) ordinary, and (iii) universal kriging, respectively.

4.2 Prediction for Gaussian Data and Processes

Recall from Chapter 3 that when we interpolate with spatio-temporal data we specify that

the value of the process at some location is simply a weighted combination of nearby ob-

servations. We described a couple of deterministic methods to obtain such weights (inverse

distance weighting and kernel smoothing). Here we are concerned with determining the

statistically “optimal” weights in this linear combination. At this point, it is worth taking a

step back and looking at the big picture.

In the case of predicting statistically within the domain of our space-time observation

locations (smoothing), we are just interpolating our observations Z to the location (s0; t0) in

a way that respects that we have observational uncertainty. For example, in the special case

where (s0; t0) corresponds to an observation location, we are simply smoothing out this

observation uncertainty. Unlike the deterministic approaches to spatio-temporal prediction

in Chapter 3, we seek the weights in a linear predictor that minimize the interpolation error

on average. This optimization criterion is E(Y (s0; t0) − Ŷ (s0; t0))
2, the mean square

prediction error (MSPE). The best linear unbiased predictor that minimizes the MSPE is

referred to as the kriging predictor. As we shall see, the kriging weights are determined

by the statistical dependence (i.e., covariances) between observation locations (roughly, the

greater the covariability, the greater the weight), yet respect the measurement uncertainty.

There are several different approaches to deriving the form of the optimal linear pre-

dictor, which we henceforth call S-T kriging. Given that we are just focusing on the first

two moments in the descriptive approach (i.e., the means, variances, and covariances of

Y (·; ·)), it is convenient to assume that the underlying process is a Gaussian process and

the measurement error has a Gaussian distribution. We take this approach in this book.

What is a Gaussian process? Consider a stochastic process denoted by {Y (r) : r ∈
D}, where r is a spatial, temporal, or spatio-temporal location in D, a subset of d-

dimensional space. This process is said to be a Gaussian process, often denoted Y (r) ∼
GP (µ(r), c(·; ·)), if the process has all its finite-dimensional distributions Gaussian, de-

termined by a mean function µ(r) and a covariance function c(r, r′) = cov(Y (r), Y (r′))
for any location {r, r′} ∈ D. (Note that in spatio-temporal statistics it is common to use

Gau(·, ·) instead of GP (·, ·), and we follow that convention in this book.) There are two

important points to make about the Gaussian process. First, because the Gaussian process
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determines a probability distribution over functions, it exists everywhere in the domain of

interest D; so, if the mean and covariance functions are known, the process can be de-

scribed anywhere in the domain. Second, only finite distributions need to be considered in

practice because of the fundamental property that any finite collection of Gaussian process

random variables {Y (ri)} has a joint multivariate normal (Gaussian) distribution. This al-

lows the use of traditional machinery of multivariate normal distributions when performing

prediction and inference. Gaussian processes are fundamental to the theoretical and prac-

tical foundation of spatial and spatio-temporal statistics and, since the first decade of the

twenty-first century, have become increasingly important and popular modeling tools in the

machine-learning community (e.g., Rasmussen and Williams, 2006).

In the context of S-T kriging, time is implicitly treated as another dimension, and we

consider covariance functions that describe covariability between any two space-time lo-

cations (where in general we should use covariance functions that respect that durations in

time are different from distances in space). We can write the data model in terms of vectors,

Z = Y + ε, (4.3)

where Y ≡ (Y (s11; t1), . . . , Y (smTT ; tT ))
′ and ε ≡ (ǫ(s11; t1), . . . , ǫ(smTT ; tT ))

′. Simi-

larly, the vector form of the process model for Y is written

Y = µ+ η, (4.4)

where µ ≡ (µ(s11; t1), . . . , µ(smTT ; tT ))
′ = Xβ, and η ≡ (η(s11; t1), . . . , η(smTT ; tT ))

′.

Note that cov(Y) ≡ Cy = Cη, cov(ε) ≡ Cǫ, and cov(Z) ≡ Cz = Cy +Cǫ.

Now, defining c′0 ≡ cov(Y (s0; t0),Z), c0,0 ≡ var(Y (s0; t0)), and X the (
∑T

j=1mj)×
(p+ 1) matrix given by X ≡ [x(sij ; tj)

′ : i = 1, . . . ,mj ; j = 1, . . . , T ], consider the joint

Gaussian distribution,

[
Y (s0; t0)

Z

]
∼ Gau

([
x(s0; t0)

′

X

]
β ,

[
c0,0 c′0
c0 Cz

])
.

Using well-known results for conditional distributions from a joint multivariate normal

(Gaussian) distribution (e.g., Johnson and Wichern, 1992), and assuming (for the moment)

that β is known (recall that this is called S-T simple kriging), one can obtain the conditional

distribution,

Y (s0; t0) | Z ∼ Gau(x(s0; t0)
′β + c′0C

−1
z (Z−Xβ) , c0,0 − c′0C

−1
z c0), (4.5)

for which the mean is the S-T simple kriging predictor,

Ŷ (s0; t0) = x(s0; t0)
′β + c′0C

−1
z (Z−Xβ), (4.6)

and the variance is the S-T simple kriging variance,

σ2Y,sk(s0; t0) = c0,0 − c′0C
−1
z c0. (4.7)
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Note that we call σY,sk(s0; t0) the S-T simple kriging prediction standard error, and it has

the same units as Ŷ (s0; t0).
It is fundamentally important in kriging that one be able to specify the covariance be-

tween the process at any two locations in the domain of interest (i.e., c0). That is, we assume

that the process is defined for an uncountable set of locations and the data correspond to a

partial realization of this process. As mentioned above, this is the benefit of considering S-T

kriging from the Gaussian-process perspective. That is, if we assume we have a Gaussian

process, then we can specify a valid finite-dimensional Gaussian distribution for any finite

subset of locations.

Another important observation to make here is that (4.6) is a predictor of the hidden

value, Y (s0; t0), not of Z(s0; t0). The form of the conditional distribution given by (4.5)

helps clarify the intuition behind S-T kriging. In particular, note that the conditional mean

takes the residuals between the observations and their marginal means (i.e., Z − Xβ),

weights them according to w′ ≡ c′0C
−1
z , and adds the result back onto the marginal mean

corresponding to the prediction location (i.e., x(s0; t0)
′β). Furthermore, the weights, w,

are only a function of the covariances and the measurement-error variance. Another way

to think of this is that the trend term x(s0; t0)
′β is the mean of Y (s0; t0) prior to consider-

ing the observations; then the simple S-T kriging predictor combines this prior mean with

a weighted average of the mean-corrected observations to get a new, conditional, mean.

Similarly, if one interprets c0,0 as the variance prior to considering the observations, then

the conditional (on the data) variance reduces this initial variance by an amount given by

c′0C
−1
z c0. Consider the following numerical example.

Example: Simple S-T Kriging

Suppose we have four observations in a one-dimensional space and a one-dimensional time

domain: Z(2; 0.2) = 15, Z(2; 1.0) = 22, Z(6; 0.2) = 17, and Z(6; 0.9) = 23. We

seek an S-T simple kriging prediction for Y (s0; t0) = Y (3; 0.5). The data locations and

prediction location are shown in Figure 4.1. Let x(s; t) = 1 for all s and t, β = 20, and

var(Y (s; t)) = 2 for all s and t. Using the spatio-temporal covariance function (4.13)

discussed below (with parameters a = 2, b = 0.2, σ2 = c0,0 = 2.0, and d = 1), the

covariance (between data) matrix Cz , the covariance (between the data and the latent Y (·; ·)
at the prediction location) vector c0, and the weights w′ = c′0C

−1
z are given by

Cz =




2.0000 1.0600 1.0546 0.9364
1.0600 2.0000 0.8856 1.0599
1.0546 0.8856 2.0000 1.1625
0.9364 1.0599 1.1625 2.0000


 , c0 =




1.6653
1.3862
1.3161
1.2539


 , w =




0.5377
0.2565
0.1841
0.1323


 .
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Figure 4.1: Data locations (blue dots) and prediction location (red dot) in a (one-

dimensional) space-time domain for an example of S-T simple kriging. The data values

and the S-T simple kriging prediction are given next to the locations. The S-T simple krig-

ing weights associated with each data location are given in parentheses next to the dashed

lines connecting the data locations to the prediction location.

Substituting these matrices, vectors, and the data vector, Z = (15, 22, 17, 23)′, into the

formulas for the S-T kriging predictor (4.6) and prediction variance (4.7), we obtain

Ŷ (3; 0.5) = 17.67,

σ̂2Y,sk = 0.34.

Note that the S-T simple kriging prediction (17.67) is substantially smaller than the prior

mean (20), mainly because the highest weights are associated with the earlier times, which

have smaller values. In addition, the S-T simple kriging prediction variance (0.34) is much

less than the prior variance (2), as expected when there is strong spatio-temporal depen-

dence.

In most real-world problems, one would not knowβ. In this case, our optimal prediction

problem is analogous to the estimation of effects in a linear mixed model, that is, in a model

that considers the response in terms of both fixed effects (e.g., regression terms) and random

effects, η. It is straightforward to show that the optimal linear unbiased predictor, or S-T

universal kriging predictor of Y (s0; t0) is

Ŷ (s0; t0) = x(s0; t0)
′β̂gls + c′0C

−1
z (Z−Xβ̂gls), (4.8)

where the generalized least squares (gls) estimator of β is given by

β̂gls ≡ (X′C−1
z X)−1X′C−1

z Z. (4.9)
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The associated S-T universal kriging variance is given by

σ2Y,uk(s0; t0) = c0,0 − c′0C
−1
z c0 + κ, (4.10)

where

κ ≡ (x(s0; t0)−X′C−1
z c0)

′(X′C−1
z X)−1(x(s0; t0)−X′C−1

z c0)

represents the additional uncertainty brought to the prediction (relative to S-T simple krig-

ing) due to the estimation of β. We call σY,uk(s0; t0) the S-T universal kriging prediction

standard error.

Both the S-T simple and universal kriging equations can be extended easily to accom-

modate prediction at many locations in space and time, including those at which we have

observations. For example, in Figure 4.2, we show predictions of maximum temperature

from data in the NOAA data set in July 1993 on a space-time grid (using a separable spatio-

temporal covariance function, defined in Section 4.2.1), with 14 July deliberately omitted

from the data set. The respective prediction standard errors are shown in Figure 4.2, where

those for 14 July are substantially larger. We produce these figures in Lab 4.1.

For readers who have some experience with spatial statistics, particularly geostatistics,

the development given above in the spatio-temporal context will look very familiar. S-T

simple, ordinary, and universal kriging are the same as their spatial counterparts, but now

in space and time.

So far, we have assumed that we know the variances and covariances that make up Cy,

Cǫ (recall that Cz = Cy +Cǫ), c0, and c0,0. Of course, in reality we would rarely (if ever)

know these. The seemingly simple solution is to parameterize them, say in terms of parame-

ters θ, and then estimate them through maximum likelihood, restricted maximum likelihood

(see Technical Note 4.2) as in the classical linear mixed model, or perhaps through a fully

Bayesian implementation, in which case one specifies prior distributions for the elements

of θ (see Section 4.2.3). As in spatial statistics, the parameterization of these covariance

functions is one of the most challenging problems in spatio-temporal statistics.

4.2.1 Spatio-Temporal Covariance Functions

We saw in the previous section that S-T kriging predictors require that we know Cz and c0,

and hence we need to know the spatio-temporal covariances between the hidden random

process evaluated at any two locations in space and time. It is important to note that not any

function can be used as a covariance function. Let a general spatio-temporal covariance

function be denoted by

c∗(s, s
′; t, t′) ≡ cov(Y (s; t), Y (s′; t′)), (4.11)

which is appropriate only if the function is valid (i.e., non-negative-definite, which guar-

antees that the kriging variances are non-negative). (Note that in (4.11) the primes are not

transposes, but are used to denote different spatio-temporal locations.)
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Figure 4.2: (Left) S-T universal kriging predictions and (right) prediction standard errors

of maximum temperature (in degrees Fahrenheit) within a square lat-lon box enclosing the

domain of interest for six days (each 5 days apart) in July 1993 using the R package gstat.

Data for 14 July 1993 were omitted from the original data set.

In practice, classical-kriging implementations assume second-order stationarity: the

random process is said to be second-order (or weakly) stationary if it has a constant ex-

pectation µ (say) and a covariance function that can be expressed in terms of spatial and

temporal lags:

c∗(s, s
′; t, t′) = c(s′ − s; t′ − t) = c(h; τ),

where h ≡ s′ − s and τ ≡ t − t′ are the spatial and temporal lags, respectively. Recall

from Chapter 2 that if the dependence on spatial lag is only a function of ||h||, we say

there is spatial isotropy. Arguably, the two biggest benefits of the second-order stationarity

assumption are that it allows for more parsimonious parameterizations of the covariance

function, and that it provides pseudo-replication of dependencies at given lags in space

and time, both of which facilitate estimation of the covariance function’s parameters. (In

practice, it is unlikely that the spatio-temporal stationary covariance function is completely

known and it is usually specified in terms of some parameters θ.)

The next question is how to obtain valid stationary (or non-stationary) spatio-temporal

covariance functions. Mathematically speaking, how do we ensure that the functions we

choose are non-negative-definite?

Separable (in Space and Time) Covariance Functions

Separable classes of spatio-temporal covariance functions have often been used in spatio-

temporal modeling because they offer a convenient way to guarantee validity. The separable

class is given by

c(h; τ) ≡ c(s)(h) · c(t)(τ),
which is valid if both the spatial covariance function, c(s)(h), and the temporal covari-

ance function, c(t)(τ), are valid. There are a large number of classes of valid spatial and
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Figure 4.3: Exponential covariance function for time lag τ , σ2t = 2.5, and at = 2.

valid temporal covariance functions in the literature (e.g., the Matérn, power exponential,

and Gaussian classes, to name a few). For example, the exponential covariance function

(which is a special case of both the Matérn covariance function and the power exponential

covariance function) is given by

c(s)(h) = σ2s exp

{
−||h||
as

}
,

where σ2s is the variance parameter and as is the spatial-dependence (or scale) parameter

in units of distance. The larger as is, the more dependent the spatial process is. Similarly,

c(t)(τ) = σ2t exp{−|τ |/at} is a valid temporal covariance function (see Figure 4.3 for an

example).

A consequence of separability is that the resulting spatio-temporal correlation function,

ρ(h; τ) ≡ c(h; τ)/c(0; 0), is given by

ρ(h; τ) = ρ(s)(h; 0) · ρ(t)(0; τ),

where ρ(s)(h; 0) and ρ(t)(0; τ) are the corresponding marginal spatial and temporal cor-

relation functions, respectively. Thus, one only needs the marginal spatial and temporal

correlation functions to obtain the joint spatio-temporal correlation function under separ-

ability. In addition, separable models facilitate computation. Notice (e.g., from (4.6) and

(4.7)) that the inverse C−1
z is ubiquitous in S-T kriging equations. Separability can allow

one to consider the inverse of the spatial and temporal components separately. For example,

assume that Z(sij ; tj) is observed at the same i = 1, . . . ,mj = m locations at each time

point, j = 1, . . . , T . In this case, one can write Cz = C
(t)
z ⊗ C

(s)
z , where ⊗ is the Kro-

necker product (see Technical Note 4.1), C
(t)
z is the T × T temporal covariance matrix,
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Figure 4.4: Contour plot of the empirical covariance function (top left), fitted separable co-

variance function obtained by taking the product of ĉ(s)(‖h‖) and ĉ(t)(|τ |) (top right), fitted

separable covariance function using the spatio-temporal separable model given in equation

(4.18) and (4.19) (bottom left) and fitted covariance function using the non-separable model

given in equation (4.20) (bottom right).

and C
(s)
z is the m×m spatial covariance matrix. Taking advantage of a useful property of

Kronecker products (see Technical Note 4.1), C−1
z = (C

(t)
z )−1 ⊗ (C

(s)
z )−1, which shows

that to take the inverse of the mT × mT matrix Cz , one only has to take the inverses of

T × T and m×m matrices.

Consider the maximum-temperature observations (Tmax) from the NOAA data set pre-

sented in Chapter 2. After removing the obvious linear trend in latitude, we consider the

empirical isotropic spatio-temporal covariance function (discussed in Section 2.4.2) calcu-

lated for the residuals, shown in Figure 4.4 (top left panel), and we compare that to the

empirical separable model in Figure 4.4 (top right panel). That is, we are simply consider-

ing the product of ĉ(0; |τ |) and ĉ(‖h‖; 0). Note that these two plots are remarkably similar,

giving visual support for a separable model in this case. We shall discuss the lower two

panels of this figure in Section 4.2.3. See Crujeiras et al. (2010) and references therein for

formal tests of separability.
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A consequence of the separability property is that the temporal evolution of the process

at a given spatial location does not depend directly on the process’ temporal evolution at

other locations. As we discuss in Chapter 5, this is very seldom the case for real-world

processes as it implies no interaction across space and time. The question then becomes,

“how can we obtain other classes of spatio-temporal covariance functions?” Several ap-

proaches that have been developed in the literature: (i) sums-and-products formulation; (ii)

construction by a spectral representation through Bochner’s theorem (which formally re-

lates the spectral representation to the covariance representation; e.g., the inverse Fourier

transform is a special case); and (iii) covariance functions from the solution of stochastic

partial differential equations (SPDEs). We discuss these briefly below.

Technical Note 4.1: Kronecker Products

Consider two matrices, an na×ma matrix, A, and an nb×mb matrix, B. The Kronecker

product is given by the nanb ×mamb matrix A⊗B defined as

A⊗B =




a11B · · · a1maB
...

...
...

ana1B · · · anamaB


 .

The Kronecker product has some nice properties that facilitate matrix representations.

For example, if A is na × na and B is nb × nb, the inverse and determinants can be

expressed in terms of the individual matrices:

(A⊗B)−1 = A−1 ⊗B−1,

|A⊗B| = |A|nb |B|na .

In the context of spatio-temporal processes, Kronecker products are useful in at least

two ways. First, they provide a convenient way to represent spatio-temporal covariance

matrices for separable processes. That is, consider {Y (si; tj) : i = 1, . . . ,m; j =

1, . . . , T} and define C
(s)
y to be the m × m matrix of purely spatial covariances and

C
(t)
y to be the T × T matrix of purely temporal covariances. Then the mT × mT

spatio-temporal covariance matrix can be written as, Cy = C
(t)
y ⊗ C

(s)
y if the process

is separable. Although this may not be realistic for many processes, it is advantageous

because of the inverse property, C−1
y = (C

(t)
y )−1 ⊗ (C

(s)
y )−1; see Section 4.2.1.

The second way that Kronecker products are useful for spatio-temporal modeling is for

forming spatio-temporal basis functions, which we discuss in Section 4.4. In particular,

if we construct an m × nα,s matrix Φ by evaluating nα,s spatial basis functions at m
spatial locations, and a T ×nα,t matrix Ψ by evaluating nα,t temporal basis functions at

T temporal locations, then the matrix constructed from spatio-temporal basis functions
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formed through the tensor product of the spatial and temporal basis functions and evalu-

ated at all combinations of spatial and temporal locations is given by the mT × nα,snα,t
matrix B = Ψ⊗Φ. Basis functions can be used to construct spatio-temporal covariance

functions. Note that using a set of basis functions constructed through the tensor product

yields a class of spatio-temporal covariance functions that are in general not separable.

Sums-and-Products Formulation

There is a useful result in mathematics that states that, as well as the product, the sum of

two non-negative-definite functions is non-negative-definite. This allows us to construct

valid spatio-temporal covariance functions as the product and/or sum of valid covariance

functions. For example,

c(h; τ) ≡ p c
(s)
1 (h) · c(t)1 (τ) + q c

(s)
2 (h) + r c

(t)
2 (τ) (4.12)

is a valid spatio-temporal covariance function when p > 0, q ≥ 0, r ≥ 0; c
(s)
1 (h) and

c
(s)
2 (h) are valid spatial covariance functions; and c

(t)
1 (τ) and c

(t)
2 (τ) are valid temporal co-

variance functions. Of course, (4.12) can be extended to include the sum of many terms and

the result is non-negative definite if each component covariance function is non-negative-

definite.

The sums-and-products formulation above points to connections between separable

covariance functions and other special cases. For example, consider the fully symmetric

spatio-temporal covariance functions: a spatio-temporal random process {Y (s; t)} is said

to have a fully symmetric spatio-temporal covariance function if, for all spatial locations

s, s′ in the spatial domain of interest and time points t, t′ in the temporal domain of interest,

we can write

cov(Y (s; t), Y (s′; t′)) = cov(Y (s; t′), Y (s′; t)).

Using such covariances to model spatio-temporal dependence is not always reasonable for

real-world processes. For example, is it reasonable that the covariance between yesterday’s

temperature in London and today’s temperature in Paris is the same as that between yester-

day’s temperature in Paris and today’s temperature in London? Such a relationship might be

appropriate under certain meteorological conditions, but not in general (imagine a weather

system moving from northwest to southeast across Europe). So, for scientific reasons or as

a result of an exploratory data analysis, the fully symmetric covariance function may not be

an appropriate choice.

Now, note that the covariance given by (4.12) is an example of a fully symmetric co-

variance, but it is only separable if q = r = 0. In general, separable covariance functions

are always fully symmetric, while the converse is not true.
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Construction via a Spectral Representation

An important example of the construction approach to spatio-temporal covariance function

development was given by Cressie and Huang (1999). They were able to cast the problem

in the spectral domain so that one only needs to choose a one-dimensional positive-definite

function of time lag in order to obtain a class of valid non-separable spatio-temporal covari-

ance functions. In their Example 1, they construct the stationary spatio-temporal covariance

function,

c(h; τ) = σ2 exp{−b2||h||2/(a2τ2 + 1)}/(a2τ2 + 1)d/2, (4.13)

where σ2 = c(0; 0), d corresponds to the spatial dimension (often d = 2), and a ≥ 0 and

b ≥ 0 are scale parameters in space and time, respectively. There are other classes of such

spatio-temporal models, and this has been an active area of research in the past few decades

(see the overview in Montero et al., 2015).

R tip: In this book we limit our focus to gstat when doing S-T kriging. However, there

are numerous other packages in R that could be used. Among these CompRandFld and

RandomFields are worth noting because of the large selection of non-separable spatio-

temporal covariance functions they make available to the user.

Stochastic Partial Differential Equation (SPDE) Approach

The SPDE approach to deriving spatio-temporal covariance functions was originally in-

spired by statistical physics, where physical equations forced by random processes that

describe advective, diffusive, and decay behavior were used to describe the second mo-

ments of macro-scale processes, at least in principle. A famous example of this approach

in spatial statistics resulted in the ubiquitous Matérn spatial covariance function, which was

originally derived as the solution to a fractional stochastic diffusion equation and has been

extended by several authors (e.g., Montero et al., 2015).

Although such an approach can suggest non-separable spatio-temporal covariance func-

tions, only a few special (simple) cases lead to closed-form functions (see, for example,

Cressie and Wikle, 2011, p. 300). Perhaps more importantly, although these models appear

to have a physical basis through the SPDE, macro-scale real-world processes of interest are

seldom this simple (e.g., linear and stationary in space and/or time). That is, the spatio-

temporal covariance functions that can be obtained in closed form from SPDEs are seldom

directly appropriate models for physical processes (but may still provide good fits to data).
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4.2.2 Spatio-Temporal Semivariograms

Historically, it has been common in the area of spatial statistics known as geostatistics to

consider dependence through the variogram. In the context of a spatio-temporal random

process {Y (s; t)}, the spatio-temporal variogram is defined as

var(Y (s; t)− Y (s′; t′)) ≡ 2γ(s, s′; t, t′), (4.14)

where γ(·) is called the semivariogram (see Technical Note 2.1). The stationary version of

the spatio-temporal variogram is denoted by 2γ(h; τ), where h = s′−s and τ = t′−t, ana-

logous to the stationary-covariance representation given previously. The underlying process

Y is considered to be intrinsically stationary if it has a constant expectation and a station-

ary variogram. When the process is second-order stationary (second-order stationarity is

a stronger restriction than intrinsic stationarity), there is a useful and simple relationship

between the spatio-temporal semivariogram and the covariance function, namely,

γ(h; τ) = c(0; 0)− c(h; τ). (4.15)

Notice that strong spatio-temporal dependence corresponds to small values of the semi-

variogram. Thus, contour plots of {γ(h; τ)} in (4.15) start near zero close to the origin

(h; τ) = (0, 0), and they rise to a constant value (the “sill”) as both h and τ move away

from the origin.

Although there has been a preference to consider dependence through the variogram in

geostatistics, this has not been the case in more mainstream spatio-temporal statistical ana-

lyses. The primary reason for this is that most real-world processes are best characterized in

the context of local second-order stationarity. The difference between intrinsic stationarity

and second-order stationarity is most appreciated when the lags h and τ are large. If only

local stationarity is expected and modeled, the extra generality given by the variogram is

not needed. Still, the empirical semivariogram offers a useful way to summarize the spatio-

temporal dependence in the data and to fit a spatio-temporal covariance function.

On a theoretical level, the stationary variogram allows S-T kriging for a larger class

of processes (i.e., intrinsically stationary processes) than the second-order stationary pro-

cesses. A price to pay for this extra generality is the extreme caution needed when using the

variogram to find optimal kriging coefficients. Cressie and Wikle (2011, p. 148) point out

that the universal-kriging weights may not sum to 1 and, in situations where they do not,

the resulting variogram-based kriging predictor will not be optimal. However, when using

the covariance-based kriging predictor, there are no such issues and it is always optimal.

In addition, on a more practical level, most spatio-temporal analyses consider models

that are specified from a likelihood perspective or a Bayesian perspective, where covariance

matrices are needed. The variogram by itself does not specify the covariance matrix, since

one also needs to model the variance function σ2(s; t) ≡ var(Y (s; t)), which is usually

impractical unless it is stationary and does not depend on s and t. Some software packages
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that perform S-T kriging, such as gstat, fit variogram functions to data, mainly for historical

reasons and because of the implicit assumption in (4.14) that a constant mean need not

be assumed when estimating the variogram. (This is generally a good thing because the

constant mean assumption is tenuous in practice, since the mean for real-world processes

typically depends on exogenous covariates that vary with space and time.)

4.2.3 Gaussian Spatio-Temporal Model Estimation

The spatio-temporal covariance and variogram functions presented above depend on un-

known parameters. These are almost never known in practice and must be estimated

from the data. There is a history in spatial statistics of fitting covariance functions (or

semivariograms) directly to the empirical estimates – for example, by using a least squares

or weighted least squares approach (see Cressie, 1993, for an overview). However, in the

spatio-temporal context we prefer to consider fully parameterized covariance models and

infer the parameters through likelihood-based methods or through fully Bayesian meth-

ods. This follows closely the approaches in mixed-linear-model parameter estimation; for

an overview, see McCulloch and Searle (2001). We briefly describe the likelihood-based

approach and the Bayesian approach below.

Likelihood Estimation

Given the data model (4.3), note that Cz = Cy + Cǫ. Then, in obvious notation, Cz

depends on parameters θ ≡ {θy,θǫ} for the covariance functions of the hidden process Y
and the measurement-error process ǫ, respectively. The likelihood can then be written as

L(β,θ;Z) ∝ |Cz(θ)|−1/2 exp

{
−1

2
(Z−Xβ)′(Cz(θ))

−1(Z−Xβ)

}
, (4.16)

and we maximize this with respect to {β,θ}, thus obtaining the maximum likelihood es-

timates (MLEs), {β̂mle, θ̂mle}. Because the covariance parameters appear in the matrix

inverse and determinant in (4.16), analytical maximization for most parametric covari-

ance models is not possible, but numerical methods can be used. To reduce the number

of parameters in this maximization, we often consider “profiling,” where we replace β in

(4.16) with the generalized least squares estimator, βgls = (X′Cz(θ)
−1X)−1X′Cz(θ)

−1Z

(which depends only on θ). Then the profile likelihood is just a function of the unknown

parameters θ. Using a numerical optimization method (e.g., Newton–Raphson) to obtain

θ̂mle, we then obtain β̂mle = (X′Cz(θ̂mle)
−1X)−1X′Cz(θ̂mle)

−1Z, which is the MLE

of β. The parameter estimates {β̂mle, θ̂mle} are then substituted into the kriging equations

above (e.g., (4.8) and (4.10)) to obtain the empirical best linear unbiased predictor (EBLUP)

and the associated empirical prediction variance.
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R tip: Maximizing the log-likelihood (i.e., the log of (4.16)) in R can be done in a num-

ber of ways. Among the most popular functions in base R are nlm, which implements a

Newton-type algorithm, and optim, which contains a number of general-purpose rou-

tines, some of which are gradient-based. When a simple covariance function is used,

the gradient can be found analytically, and gradient information may then be used to

facilitate optimization. Many of the parameters in our models (such as the variance or

dependence-scale parameters) need to be positive to ensure positive-definite covariance

matrices. This can be easily achieved by finding the MLEs of the log of the parameters,

instead of the parameters themselves. Then the MLE of the parameter on the original

scale is obtained by exponentiating the MLE on the log scale. In this case, one typically

uses the delta method to obtain the variance of the transformed parameter estimates (see,

for example, Kendall and Stuart, 1969).

As described in Technical Note 4.2, restricted maximum likelihood (REML) considers

the likelihood of a linear transformation of the data vector such that the errors are orthogonal

to the Xs that make up the mean function. Numerical maximization of the associated

likelihood, which is only a function of the parameters θ (i.e., not of β), gives θ̂reml. These

estimates are substituted into (4.9), the GLS formula for β, to obtain β̂reml as well as the

kriging equations (4.8) and (4.10).

Both the MLE and REML approaches have the advantage that they are based on the

“likelihood principle” and, assuming that the Gaussian distributional assumptions are cor-

rect, they have desirable properties such as sufficiency, invariance, consistency, efficiency,

and asymptotic normality. In mixed-effects models and in spatial statistics, REML is usu-

ally preferred over MLE for estimation of covariance parameters because REML typically

has less bias in small samples (see, for example, the overview in Wu et al., 2001).

Technical Note 4.2: Restricted Maximum Likelihood

Consider a contrast matrix K such that E(KZ) = 0. For example, let K be an (m−p−
1)×m matrix orthogonal to the column space of the m× (p+1) design matrix X. That

is, let K correspond to the m− p− 1 linearly independent rows of (I−X(X′X)−1X′).
Because KX = 0, it follows that E(KZ) = KXβ = 0, and var(KZ) = KCz(θ)K

′.

In this case, the likelihood based on KZ is not a function of the mean parameters β and

is given by

Lreml(θ;Z) ∝ |KCz(θ)K
′|−1/2 exp

{
−1

2
(KZ)′(KCz(θ)K

′)−1(KZ)

}
. (4.17)

Then (4.17) is maximized numerically to obtain θ̂reml. Note that parameter estima-

tion and statistical inference with REML do not depend on the specific choice of K,
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so long as it is a contrast matrix that leads to E(KZ) = 0 (Patterson and Thomp-

son, 1971). One can then use these estimates in a GLS estimate of β: β̂reml ≡
(X′Cz(θ̂reml)

−1X)−1X′Cz(θ̂reml)
−1Z.

Bayesian Inference

Instead of treating β and θ as fixed, unknown, and to be estimated (e.g., from the likeli-

hood), prior distributions [β] and [θ] (often assumed independent) could be posited for the

mean parameters β and the covariance parameters θ, respectively. Typical choices for [θ]
do not admit closed-form posterior distributions for [Y (s0)|Z], which means that the pre-

dictor E(Y (s0; t0)|Z) and the associated uncertainty, var(Y (s0; t0)|Z), are not available in

closed form and must be obtained through numerical evaluation of the posterior distribution

(for more details, see Section 4.5.2 below; Cressie and Wikle, 2011; Banerjee et al., 2015).

Example: S-T Kriging

Consider the maximum-temperature observations in the NOAA data set (Tmax). The em-

pirical covariogram of these data is shown in the top left panel of Figure 4.4. Consider

two spatio-temporal covariance functions fitted to the residuals from a model with a regres-

sion component that includes an intercept and latitude as a covariate. The first of these

covariance functions is given by an isotropic and stationary separable model of the form

c(sep)(‖h‖; |τ |) ≡ c(s)(‖h‖) · c(t)(|τ |), (4.18)

in which we let both covariance functions, c(s)(·) and c(t)(·), take the form

c(·)(h) = b1 exp(−φh) + b2I(h = 0), (4.19)

where φ, b1, and b2 are parameters that are different for c(s)(·) and c(t)(·) and need to be

estimated; and I(·) is the indicator function that is used to represent the so-called nugget

effect, made up of the measurement-error variance plus the micro-scale variation. The fitted

model is shown in the bottom left panel of Figure 4.4.

The second model we fit is a non-separable spatio-temporal covariance function, in

which the temporal lag is scaled to account for the different nature of space and time. This

model is given by

c(st)(‖va‖) ≡ b1 exp(−φ‖va‖) + b2I(‖va‖ = 0), (4.20)

where va ≡ (h′, aτ)′, and recall that ||va|| = (h′h+a2τ2)1/2. Here, a is the scaling factor

used for generating the space-time anisotropy. The fitted model is shown in the bottom right

panel of Figure 4.4.
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The non-separable spatio-temporal covariance function (4.20) allows for space-time

anisotropy, but it is otherwise relatively inflexible. It only contains one parameter (a) to

account for the different scaling needed for space and time, one parameter (φ) for the length

scale, and two parameters to specify the variance (the nugget effect, b2, and the variance

of the smooth component, b1). Thus, (4.20) has a total of four parameters, in contrast to

the six parameters in (4.18). This results in a relatively poor fit to the Tmax data from the

NOAA data set. In this case, the separable model is able to provide a better reconstruction

of the empirical covariance function despite its lack of space-time interaction, which is

not surprising given that the fitted separable covariance function (Figure 4.4, top right) is

visually similar to the empirical spatio-temporal covariance function (Figure 4.4, top left).

We note that although the separable model fits better in this case, it is still a rather unrealistic

model for most processes of interest.

4.3 Random-Effects Parameterizations

As discussed previously, it can be difficult to specify realistic valid spatio-temporal co-

variance functions and to work with large spatio-temporal covariance matrices (e.g., Cz)

in situations with large numbers of prediction or observation locations. One way to miti-

gate these problems is to take advantage of conditional specifications that the hierarchical

modeling framework allows.

We can consider classical linear mixed models from either a conditional perspective,

where we condition the response on the random effects, or from a marginal perspective,

where the random effects have been averaged (integrated) out (see Technical Note 4.3), and

it is this marginal distribution that is modeled. We digress briefly from the spatio-temporal

context to illustrate the conditional versus marginal approach in a simple longitudinal-data-

analysis setting. Longitudinal data are collected over time, often in a clinical trial where

the response to drug treatments and controls is measured on the same subjects at different

follow-up times. Here, one might allow there to be subject-specific intercepts or slopes

corresponding to the treatment effect over time.

Figure 4.5 shows simulated data for a longitudinal study in which 90 individuals are

assigned randomly to three treatment groups (control, treatment 1, and treatment 2), 30 per

group. Their responses are then plotted through time (20 time points). In each case, the re-

sponse is generally linear with time, with individual-specific random intercepts and slopes.

These responses can be modeled in terms of a linear mixed model, with fixed effects corre-

sponding to the treatment (control, treatment 1, and treatment 2), individual random effects

for the slope and intercept, and a random effect for the error. The random effects correspond

to a situation where individuals have somewhat different baseline responses (intercept), and

their response with time to the treatment is also subject to individual variation (slope).

For the simulated data shown in Figure 4.5, we might consider a longitudinal model
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such as (see, for example, Verbeke and Molenberghs, 2009, Section 3.3):

Zij =





(β0 + α0i) + (β1 + α1i)tj + ǫij , if the subject receives the control,
(β0 + α0i) + (β2 + α1i)tj + ǫij , if the subject receives treatment 1,
(β0 + α0i) + (β3 + α1i)tj + ǫij , if the subject recieves treatment 2,

where Zij is the response for the ith subject (i = 1, . . . , n = 90) at time j = 1, . . . , T =
20; β0 is an overall fixed intercept; β1, β2, β3 are fixed time-trend effects; and α0i ∼
iidGau(0, σ21) and α1i ∼ iidGau(0, σ22) are individual-specific random intercept and

slope effects, respectively. We can write this model in the classical linear mixed-model

notation as

Zi = Xiβ +Φαi + εi,

where Zi is a 20-dimensional vector of responses for the ith individual; Xi is a 20 × 4
matrix consisting of a column vector of 1s (intercept) and three columns indicating the

treatment group of the ith individual; β is a four-dimensional vector of fixed effects; Φ is a

20× 2 matrix with a vector of 1s in the first column and the second column consists of the

vector of times, (1, 2, . . . , 20)′; the associated random-effect vector is αi ≡ (α0i, α1i)
′ ∼

Gau(0,Cα), where Cα = diag(σ21, σ
2
2); and εi ∼ Gau(0, σ2ǫ I) is a 20-dimensional error

vector. We assume that the elements of {αi} and {εi} are all mutually independent.

Because the variation in the individuals’ intercepts and slopes is specified by random

effects, this formulation allows one to consider inference at the subject (individual) level

(e.g., predictions of an individual’s true values). However, if interest is in the fixed treat-

ment effects β, one might consider the marginal distribution of the responses in which these

individual random effects have been removed through averaging (integration). Responses

that share common random effects exhibit marginal dependence through the marginal co-

variance matrix, and so the inference on the fixed effects (e.g., via generalized least squares)

then accounts for this more complicated marginal dependence. For the example presented

here, one can show that the marginal covariance for an individual’s response at time tj and

tk is given by cov(Zij , Zik) = σ21 + tjtkσ
2
2 + σ2ǫ I(j = k), which says that the marginal

variance is time-varying, whereas the conditional covariance (conditioned on α) is simply

σ2ǫ I(j = k).
In the context of spatial or spatio-temporal modeling, the same considerations as for the

classical linear mixed-effects model apply. That is, we can also write the process of interest

conditional on random effects, where the random effects might be spatial, temporal, or

spatio-temporal. Why is this important? As we show in the next section, it allows us to

build spatio-temporal dependence conditionally, in such a way that the implied marginal

spatio-temporal covariance function is always valid, and it provides some computational

advantages.
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Figure 4.5: Simulated longitudinal data showing the response of individuals through time.

The red lines are the simulated responses for a control group, the green lines are the simu-

lated responses for treatment 1, and the blue lines are the simulated responses for treatment

2.

Technical Note 4.3: Marginal and Conditional Linear Mixed Models

Consider the conditional representation of a classic general linear mixed-effects model

(Laird and Ware, 1982) for response vector Z and fixed and random effects vectors, β

and α, respectively. Specifically, consider

Z|α ∼ Gau(Xβ +Φα,Cǫ), (4.21)

α ∼ Gau(0,Cα),

where X and Φ are assumed to be known matrices, and Cǫ and Cα are known covariance

matrices. The marginal distribution of Z is then given by integrating out the random

effects:

[Z] =

∫
[Z | α][α]dα. (4.22)

Note that dependence on θ, which recall are the covariance parameters in Cz and Cα,

has been suppressed in (4.22), although the (implicit) presence of θ can be seen in

(4.23)–(4.26) below. We can obtain this distribution by making use of iterated condi-

tional expectation and variance formulas. In particular, note that we can write the model

associated with (4.21) as

Z = Xβ +Φα+ ε, ε ∼ Gau(0,Cǫ), (4.23)
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and then

E(Z) = Eα{E(Z|α)} = Eα{Xβ +Φα} = Xβ, (4.24)

var(Z) = varα{E(Z|α)}+ Eα{var(Z|α)} = ΦCαΦ
′ +Cǫ. (4.25)

Then, since (4.23) shows that Z is a linear combination of normally distributed random

variables, it is also normally distributed and the marginal distribution is given by

Z ∼ Gau(Xβ,ΦCαΦ
′ +Cǫ). (4.26)

Thus, we can see that the integration over the common random effects α in (4.22) in-

duces a more complicated error covariance structure in the marginal distribution (i.e.,

compare the marginal covariance matrix, ΦCαΦ
′ + Cǫ, to the conditional covariance

matrix, Cǫ). This idea of conditioning on random effects and inducing dependence

through integration is fundamentally important to hierarchical statistical modeling. That

is, it is typically easier to model means than it is to model covariances, and so we put our

modeling effort into the conditional mean and then let the integration induce the more

complicated marginal dependence rather than specifying it directly.

4.4 Basis-Function Representations

By themselves, the conditional specifications discussed in Section 4.3 are often not enough

to help us deal with the problem of specifying realistic spatio-temporal covariance structures

and deal with the “curse of dimensionality,” which is endemic in spatio-temporal statistics.

We also need to pay particular attention to our choice of Φ, and we often do this through

basis-function expansions (recall that we introduced basis functions in Chapter 1 and in

more detail in Chapter 3).

Basis functions, like covariates, can be nonlinear functions of (s; t); however, the ex-

pansion is a linear function of the basis functions’ coefficients. We assume that these co-

efficients are the objects of inference in a statistical additive model. If the coefficients are

fixed but unknown and to be estimated, then we have a regression model and the basis func-

tions act as covariates (see, for example, Section 3.2). If the coefficients are random, then

we have a random-effects model (or, if covariates are also present, a mixed-effects model)

and we can perform inference on the moments of those random effects. More importantly,

as we have shown in Section 4.3, this framework allows us to build complexity through

marginalization. This often simplifies the model specification, particularly if we consider

the random effects to be associated with spatial, temporal, or spatio-temporal basis func-

tions. In the following subsections, we consider spatio-temporal models that involve these

three types of basis functions.
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4.4.1 Random Effects with Spatio-Temporal Basis Functions

Assuming the same data model (4.3) as above, we rewrite the process model (4.2) in terms

of fixed and random effects, β and {αi : i = 1, . . . , nα}, respectively:

Y (s; t) = x(s; t)′β + η(s; t) = x(s; t)′β +

nα∑

i=1

φi(s; t)αi + ν(s; t), (4.27)

where {φi(s; t) : i = 1, . . . , nα} are specified spatio-temporal basis functions correspond-

ing to location (s; t), {αi} are random effects, and ν(s; t) is sometimes needed to repre-

sent small-scale spatio-temporal random effects not captured by the basis functions. So, in

(4.27) we are just decomposing the spatio-temporal random process, η(s; t), into a linear

combination of random effects and a “residual” error term.

Let α ∼ Gau(0,Cα), where α ≡ (α1, . . . , αnα)
′. Supppose we are interested in

making inference on the process Y at ny spatio-temporal locations, which we denote by the

ny-dimensional vector Y. The process model then becomes

Y = Xβ +Φα+ ν, (4.28)

where the ith column of the ny×nα matrix Φ corresponds to the ith basis function, φi(·; ·),
at all of the ny spatio-temporal locations, and in the same order as that used to construct

Y. The vector ν also corresponds to the spatio-temporal ordering given in Y, and ν ∼
Gau(0,Cν). In this case, one can see (Technical Note 4.3) that the marginal distribution

of Y is given by Y ∼ Gau(Xβ,ΦCαΦ
′ + Cν), so that Cy = ΦCαΦ

′ + Cν . Now the

vector of covariance parameters θ is augmented to include parameters in Cν . The spatio-

temporal dependence is accounted for by the spatio-temporal basis functions, Φ, and in

general this could accommodate non-separable dependence. A benefit of this approach is

that the spatio-temporal modeling effort focuses on the fixed number nα of random effects.

In this case, note that the random effects α are not indexed by space and time, so it should

be easier to specify a model for them. For example, we can specify a covariance matrix to

describe their dependence, which is easier than specifying a covariance function.

In situations where nα ≪ ny (i.e., a low-rank representation), an additional benefit

comes from being able to perform matrix inverses in terms of nα-dimensional matrices

(through well-known matrix-algebra relationships). Specifically, under model (4.28) we

note that we can write Cz = ΦCαΦ
′ +V, where we define V ≡ Cν +Cǫ. Then, using

the well-known Sherman–Morrison–Woodbury matrix identities (e.g., Searle, 1982), we

can write

C−1
z = V−1 −V−1Φ(Φ′V−1Φ+C−1

α )−1Φ′V−1.

Importantly, if V−1 has simple structure (e.g., is sparse or diagonal) and nα ≪ ny, then

this inverse is easy to calculate because it is a function of a simple high-dimensional matrix

V−1 and a low-dimensional matrix inverse C−1
α .
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It is important to note that even in the full-rank (nα = ny) and over-complete (nα > ny)

cases there can still be computational benefits through induced sparsity in Cα and the use of

efficient matrix-multiplication routines that use multiresolution algorithms, orthogonality,

and/or sparse precision matrices. In addition, basis-function implementations may assume

that ν = 0 and often that Φ is orthogonal, so that ΦΦ′ = I; in those cases, one can reduce

the computational burden significantly. Finally, we note that specific basis functions and

methodologies are devised to take advantage of other properties of various matrices (e.g.,

sparse structure on the random-effects covariance matrix, Cα, or on the random-effects

precision matrix, C−1
α ).

R tip: Sparse matrices can be used in R using definitions in the packages Matrix

or spam. For both these packages, arithmetic operations, decompositions (e.g., the

Cholesky decomposition), back-solves and forward-solves, and other important matrix

operations, can be done seamlessly using standard R commands. With Matrix, a sparse

matrix can be constructed using the function sparseMatrix, while a sparse diagonal

matrix can be constructed using the function Diagonal. With the former, the argument

symmetric = TRUE can be used to specify a sparse symmetric matrix.

The definition of “basis function” in our spatio-temporal context is pretty liberal; the

matrix Φ in the product Φα is a spatio-temporal basis-function matrix so long as its coeffi-

cients α are random and the columns of Φ are spatio-temporally referenced. One decision

associated with fitting model (4.27) concerns the choice of basis functions. For spatial pro-

cesses, the decisions one makes with regard to the choice of basis functions are usually not

that critical, as there are multiple types of bases that can accommodate the same spatial

variability. However, as one starts considering spatio-temporal processes, the choice of ba-

sis functions can make a difference, especially for the dynamical formulations presented in

Chapter 5.

In general, one can use (i) fixed or parameterized basis functions, (ii) local or global

basis functions, (iii) reduced-rank, complete, or over-complete bases, and (iv) basis func-

tions with expansion coefficients possibly indexed by space, time, or space-time. Further,

the choice is affected by the presence and type of residual structure and the distribution of

the random effects. Historically, it has been fairly challenging to come up with good spatio-

temporal basis functions (for the same reason it has been difficult to come up with truly

realistic spatio-temporal covariance functions). One simplification is to consider tensor-

product basis functions (mentioned in Section 3.2 and Technical Note 4.1), where we define

the spatio-temporal basis function as the product of a spatial basis function and a temporal

basis function. Note that this does not yield a separable spatio-temporal model, in general.

It is also quite common to see spatio-temporal-dependence models for Y , where the stat-

istical dependence comes from spatial-only basis functions whose coefficients are temporal

stochastic processes (Section 4.4.2).
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Figure 4.6: (Left) Predictions of Tmax and (right) prediction standard errors in degrees

Fahrenheit within a square box enclosing the domain of interest for six days (each 5 days

apart) spanning the temporal window of the data, 01 July 1993–20 July 2003, using bisquare

spatio-temporal basis functions and the R package FRK. Data for 14 July 1993 were omitted

from the original data set.

Example: Fixed Rank Kriging

A widely adopted method for rank reduction is fixed rank kriging (FRK), implemented

in R through the package FRK. Lab 4.2 demonstrates how FRK can be applied to the

maximum temperature (Tmax) in the NOAA data set using nα = 1880 space-time tensor-

product basis functions (see Technical Note 4.1) at two resolutions for {φi(s; t) : i =
1, . . . , nα}. In particular, bisquare basis functions are used (see Lab 4.2 for details). FRK

also considers a fine-scale-variation component ν such that Cν is diagonal. The matrix Cα

is constructed such that the coefficients α at each resolution are independent, and such that

the covariances between these coefficients within a resolution decay exponentially with the

distance between the centers of the basis functions. Parameters are estimated using an EM

algorithm for computing maximum likelihood estimates (see Algorithm 4.1).

Figure 4.6 shows the predictions and prediction standard errors obtained using FRK;

as is typical for kriging, the computations are made with θ̂ substituted in for the unknown

covariance parameters θ. Although the uncertainty in θ̂ is not accounted for in this setting,

it is typically thought to be a fairly minor component of the variation in the spatio-temporal

prediction. The predictions are similar to those obtained using S-T kriging in Figure 4.2 of

Section 4.2, but they are also a bit “noisier” because of the assumed uncorrelated fine-scale

variation term; see (4.27). The prediction standard errors show similar patterns to those

obtained earlier (Figure 4.2), although there are notable differences upon visual examina-

tion. This is commonly observed when using reduced-rank methods, and it is particularly

evident with very-low-rank implementations (e.g., with EOFs) accompanied with spatially

uncorrelated fine-scale variation. In such cases, the prediction-standard-error maps can

have prediction standard errors related more to the shapes of the basis functions and less to

the prediction location’s proximity to an observation.
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Algorithm 4.1: Basic EM Algorithm

In some cases, it can be computationally more efficient to perform maximum like-

lihood estimation using the expectation-maximization (EM) algorithm rather than

through direct optimization of the likelihood function. The basic idea is that one

defines complete data to be a combination of actual observations and missing obser-

vations. LetW denote these complete data made up of observations (Wobs) and “miss-

ing” observations (Wmis), and θ represents the unknown parameters in the model, so

that the complete-data log-likelihood is given by log(L(θ|W )). The basic EM algo-

rithm is given below.

Choose starting values for the parameter, θ̂(0)

repeat i = 1, 2, . . .

1. E-Step: Obtain Q(θ|θ̂(i−1)) = E{log(L(θ |W )) |Wobs, θ̂
(i−1)}

2. M-Step: Obtain θ̂(i) = maxθ{Q(θ | θ̂(i−1))}
until Convergence either in θ̂(i) or in log(L(θ |W ))

In Section 4.4, Wobs corresponds to the data Z, while Wmis corresponds to the coeffi-

cients α.

4.4.2 Random Effects with Spatial Basis Functions

Consider the case where the basis functions of the spatio-temporal process are functions of

space only and their random coefficients are indexed by time:

Y (s; tj) = x(s; tj)
′β +

nα∑

i=1

φi(s)αi(tj) + ν(s; tj), j = 1, . . . , T, (4.29)

where {φi(s) : i = 1, . . . , nα; s ∈ Ds} are known spatial basis functions, αi(tj) are

temporal random processes, and the other model components are defined as above. We

can consider a wide variety of spatial basis functions for this model, and again these might

be of reduced rank, of full rank, or over-complete. For example, we might consider com-

plete global basis functions (e.g., Fourier), or reduced-rank empirically defined basis func-

tions (e.g., EOFs), or a variety of non-orthogonal bases (e.g., Gaussian functions, wavelets,

bisquare functions, or Wendland functions). We illustrate a few of these in one dimension

in Figure 4.7 (see also Section 3.2). It is often not important which basis function is used;

still, one has to be careful to ensure that the type and number of basis functions are flexible

and large enough to model the true dependence in Y (and the data Z). This requires some

experimentation and model diagnostics (see, for example, Chapter 6).
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Figure 4.7: Some spatial basis functions that can be employed in spatio-temporal modeling,

depicted in one-dimensional space. From left to right: bisquare, cosine, Gaussian, linear

element, Mexican-hat wavelet, and first-order Wendland functions.

Assuming interest in the spatio-temporal dependence at n spatial locations {s1, . . . , sn}
and at times {tj : j = 1, 2, . . . , T}, we can write model (4.29) in vector form as

Ytj = Xtjβ +Φαtj + νtj , (4.30)

where Ytj = (Y (s1; tj), . . . , Y (sn; tj))
′ is the n-dimensional process vector, νtj ∼

Gau(0,Cν), αtj ≡ (α1(tj), . . . , αnα(tj))
′, Φ ≡ (φ(s1), . . . ,φ(sn))

′, and φ(si) ≡
(φ1(si), . . . , φnα(si))

′, i = 1, . . . , n. An important question is then what the preferred

distribution for αtj is.

It can be shown that if αt1 ,αt2 , . . . are independent in time, where αtj ∼
iid Gau(0,Cα), then the marginal distribution of Ytj is Gau(Xtjβ,ΦCαΦ

′ +Cν), and

Yt1 ,Yt2 , . . . are independent. Hence, the nT × nT joint spatio-temporal covariance ma-

trix is given by the Kronecker product, CY = IT ⊗ (ΦCαΦ
′ + Cν), where IT is the

T -dimensional identity matrix (see Technical Note 4.1). So the independence-in-time as-

sumption implies a simple separable spatio-temporal dependence structure. To model more

complex spatio-temporal dependence structure using spatial-only basis functions, one must

specify the model for the random coefficients such that {αtj : j = 1, . . . , T} are dependent

in time. This is simplified by assuming conditional temporal dependence (dynamics) as

discussed in Chapter 5.

4.4.3 Random Effects with Temporal Basis Functions

We can also express the spatio-temporal random process in terms of temporal basis func-

tions and spatially indexed random effects:

Y (s; t) = x(s; t)′β +

nα∑

i=1

φi(t)αi(s) + ν(s; t), (4.31)
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where {φi(t) : i = 1, . . . , nα; t ∈ Dt} are temporal basis functions and {αi(s)} are

their spatially indexed random coefficients. In this case, one could model {αi(s) : s ∈
Ds; i = 1, . . . , nα} using multivariate geostatistics. The temporal-basis-function repre-

sentation given in (4.31) is not as common in spatio-temporal statistics as the spatial-basis-

function representation given in (4.29). This is probably because most spatio-temporal

processes have a scientific interpretation of spatial processes evolving in time. However,

this need not be the case, and temporal basis functions are increasingly being used to model

non-stationary-in-time processes (e.g., complex seasonal or high-frequency time behavior)

that vary across space.

Example Using Temporal Basis Functions

Spatio-temporal modeling and prediction using temporal basis functions can be carried out

with the package SpatioTemporal (see Lab 4.3). In the top panel of Figure 4.8 we show the

three temporal basis functions used to model maximum temperature in the NOAA data set.

These basis functions were obtained following a procedure similar to EOF analysis, which

is described in Technical Note 2.2. Note that the basis function φ1(t) = 1 is time-invariant.

Once φ1(t), φ2(t), and φ3(t) are selected, estimates (e.g., ordinary least squares) of

α1(s), α2(s), and α3(s) can be found and used to indicate how they might be modeled. For

example, in Lab 4.3 we see that while both α1(s) and α2(s) have a latitudinal trend, α3(s)
does not. Assigning these fields exponential covariance functions, we obtain the models:

E(α1(s)) = α11 + α12s2, cov(α1(s), α1(s+ h)) = σ21 exp(−‖h‖/r1), (4.32)

E(α2(s)) = α21 + α22s2, cov(α2(s), α2(s+ h)) = σ22 exp(−‖h‖/r2), (4.33)

E(α3(s)) = α31, cov(α3(s), α3(s+ h)) = σ23 exp(−‖h‖/r3), (4.34)

where s2 denotes the latitude coordinate at s = (s1, s2)
′, r1, r2, and r3 are scale parameters,

and σ21, σ
2
2 , and σ23 are stationary variances. We further assume that cov(αk(s), αℓ(s

′)) = 0
for k 6= ℓ, which is a strong assumption.

Using maximum likelihood to estimate all unknown parameters and “plugging” the es-

timates in, the resulting prediction is the spatio-temporal smoothed map, E(Y (·; ·) | Z),
obtained from maps of E(α1(·) | Z), E(α2(·) | Z), and E(α3(·) | Z), which can all be

written in closed form. We show the first three basis-function times series in the top panel of

Figure 4.8 and the predicted spatial maps (i.e., the basis-function coefficients), correspond-

ing to these three basis functions in the bottom panel. Note how E(α1(·) | Z) picks up the

latitude component evident in the NOAA maximum-temperature data. On the other hand,

the fields E(α2(·) | Z) and E(α3(·) | Z) appear to capture oblique and longitudinal trends

that have not been considered up to now, but with much smaller magnitudes. Although not

shown here, these predictions of the basis-function coefficients α1(·), α2(·), and α3(·) have

associated uncertainties and those can be plotted as prediction standard-error maps as well.
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Figure 4.8: Top: Basis functions φ1(t), φ2(t), and φ3(t), where the latter two were obtained

from the left-singular vectors following a singular value decomposition of the data matrix.

Bottom: E(α1(s) | Z), E(α2(s) | Z), and E(α3(s) | Z).

4.4.4 Confounding of Fixed Effects and Random Effects

Consider the general mixed-effects representation given in (4.28):

Y = Xβ +Φα+ ν, ν ∼ Gau(0,Cν),

and recall that Z = Y + ε. Although the columns of Φ are basis functions, they are

indexed in space and time in the same way that the columns of X are. Then, depending

on the structure of the columns in these two matrices, it is quite possible that the random

effects can be confounded with the fixed effects, similarly to the way extreme collinearity

can affect the estimation of fixed effects in traditional regression (recall Section 3.2.2).

This suggests that if primary interest is in inference on the fixed-effect parameters (β), then

one should mitigate potential confounding associated with the random effects. As with

collinearity, if the columns of Φ and X are linearly independent, then there is no concern

about confounding. This has led to mitigation strategies that tend to restrict the random

effects by selecting basis functions in Φ that are orthogonal to the column space of X

(or approximately so). If prediction of the hidden process Y is the primary goal, one is

typically much less concerned about potential confounding.
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4.5 Non-Gaussian Data Models with Latent Gaussian Processes

There is only one way to be Gaussian, but an infinite number of ways to be non-Gaussian!

This is a challenge that we address in this section through the use of hierarchical statistical

models. The modeling paradigm that we follow is to find a Gaussian process, possibly

deep in the hierarchy, that describes the spatio-temporal behavior of a hidden process or

of parameters that vary with space and time. The marginal distribution of the data is then

non-Gaussian, but somewhere there is a Gaussian process that results in spatio-temporal

dependence in the data through marginalization.

The examples presented thus far in this chapter have all assumed additive Gaussian error

and random-effects distributions. Many spatio-temporal problems of interest deal with dis-

tinctly non-Gaussian data (e.g., counts, binary responses, extreme values). One of the most

useful aspects of the hierarchical-modeling paradigm is that it allows one to accommodate

fairly easily non-Gaussian data models, so long as the observations are conditionally inde-

pendent, conditional on latent dependent Gaussian processes. This is the spatio-temporal

manifestation of traditional generalized linear mixed models (GLMMs) and generalized

additive mixed models (GAMMs) in statistics. That is, the likelihood assumes that the

observations are conditionally independent given a spatio-temporal mean response that is

some transformation of an additive mixed model. Our situation is a bit more flexible than

the GLMM and GAMM in that our data model does not necessarily have to be from the

exponential family, so long as we can allow conditional independence in the observations

conditioned on spatio-temporal structure in the hidden process (and/or the associated pro-

cess parameters).

As an example, consider a data model from the exponential family as in Section 3.4.1,

such that

Z(s; t) | Y (s; t), γ ∼ indep. EF (Y (s; t), γ), s ∈ Ds, t ∈ Dt, (4.35)

where EF corresponds to a distribution from the exponential family with scale parameter

γ and mean Y (s; t). In Section 3.4.1, we modeled a transformation of the mean response

in terms of additive fixed effects (e.g., a linear combination of covariates). Here, we extend

that and model the transformed mean response in terms of additive fixed effects and random

effects,

g(Y (s; t)) = x(s; t)′β + η(s; t), s ∈ Ds, t ∈ Dt,

where g(·) is a specified monotonic link function, x(s; t) is a p-dimensional vector of co-

variates for spatial location s and time t, and η(s; t) is a spatio-temporal Gaussian random

process that can be modeled either in terms of spatio-temporal covariances (as in Section

4.2), a special case of which uses a basis-function expansion (Section 4.3), or as a dynamic

spatio-temporal process (Chapter 5). The same modeling issues associated with this latent

Gaussian spatio-temporal process are present here as with the Gaussian-data case, but es-

timation of parameters and prediction of Y (s0; t0) are typically more involved given the

non-Gaussian data model.
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As an illustration, a simple model involving spatio-temporal count data could be repre-

sented by

Zt | Yt ∼ indep. Poi(Yt),

log(Yt) = Xtβ +Φtαt + νt,

where Zt is an mt-dimensional data vector of counts at mt spatial locations, Yt repre-

sents the latent spatio-temporal mean process at mt locations, Φt is an mt × nα matrix of

nα spatial basis functions, and the associated random coefficients are modeled as αt ∼
Gau(0,Cα), independent in time, with micro-scale error term νt ∼ indep. Gau(0, σ2νI);
that is, Cν = σ2νI. As discussed in Section 4.4.2, it is often more realistic to consider tem-

poral dependence through a dynamic model on {αt}, which will be explored in Chapter 5.

As was the case for the Gaussian data models in Sections 4.1–4.4, the parameters β and θ

(in Cα and Cν) could be estimated or a prior distribution could be put on them.

4.5.1 Generalized Additive Models (GAMs)

We often seek more flexible models that can accommodate nonlinear structure in the mean

function. Recall from Section 3.4.1 that one successful approach to this problem has been

through the use of GAMs. In general, these models consider a transformation of the mean

response to have an additive form in which the additive components are smooth functions

(e.g., splines) of the covariates, where generally the functions themselves are expressed as

basis-function expansions. In practical applications, the basis coefficients are treated as ran-

dom coefficients in the estimation procedure. However, just as one can add random effects

to generalized linear models (GLMs) to get generalized linear mixed models (GLMMs),

one can also add (additional) random effects to GAMs to get generalized additive mixed

models (GAMMs).

For example, consider data model (4.35). Similarly to (3.12), we can write the trans-

formed mean response additively as

g(Y (s; t)) = x(s; t)′β +

nf∑

i=1

fi(x(s; t); s; t) + ν(s; t), (4.36)

where again g(·) is a specified monotonic link function; x(s; t) is a p-dimensional vector

of covariates for spatial location s and time t; fi(·) are functions of the covariates, the

spatial locations, and the time index; and ν(s; t) is a spatio-temporal random effect. Typ-

ically, the functions fi(·) are modeled in terms of a truncated basis-function expansion; for

example, fi(x1(s; t); s; t) =
∑qi

k=1 φk(x1(s; t); s; t)αik. Thus, we can see that the basis-

function expansions with random coefficients given in (4.27), (4.29), and (4.31) are essen-

tially GAMMs. But, whereas in those models the smooth functions are typically only a

function of spatio-temporal location, spatial location, or time, respectively, it is more com-

mon in the GAM/GAMM setting to allow the basis functions to also depend nonlinearly on
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covariates. On the other hand, GAM/GAMMs typically assume that the basis functions are

smooth functions, whereas there is no such requirement for spatio-temporal-basis-function

models. GAM/GAMMs can easily be implemented in R (e.g., we provide an example with

the mgcv package in Lab 4.4).

4.5.2 Inference for Spatio-Temporal Hierarchical Models

Implicit in the estimation associated with the linear Gaussian spatio-temporal model dis-

cussed in Section 4.2.3 is that the covariance and fixed-effects parameters can be estimated

more easily when we marginalize (integrate) out the latent Gaussian spatio-temporal pro-

cess. In general, the likelihood is

[Z | θ,β] =
∫
[Z | Y,θ][Y | θ,β]dY, (4.37)

viewed as a function of θ and β. For linear mixed models (Sections 4.1–4.4), we assumed

that the two distributions inside the integral in (4.37) were Gaussian with linear relation-

ships; this implied that the marginal likelihood function was in the form of a Gaussian

density (e.g., Technical Note 4.3), and thus can be written in closed form. More generally,

we can relax the Gaussian assumption for the data model and, in the models presented here,

the latent Gaussian spatio-temporal process Y is transformed through a nonlinear link func-

tion. This lack of Gaussianity and the presence of nonlinearity complicates the analysis, as

generally the likelihood (4.37) cannot be obtained in closed form.

The integral in (4.37) can in principle be evaluated numerically, from which one can

estimate the relatively few fixed effects and covariance parameters {β,θ} through numeri-

cal optimization. In spatio-temporal models this is complicated by the high dimensionality

of the integral; recall that Y is a (
∑T

t=1mt)-dimensional vector. Traditional approaches to

this problem are facilitated by the usual conditional-independence assumption in the data

model and by exploiting the latent Gaussian nature of the random effects. These approaches

include methods such as Laplace approximation, quasi-likelihood, generalized estimating

equations, pseudo-likelihood, and penalized quasi-likelihood. For example, recent advances

in automatic differentiation have led to very efficient Laplace approximation approaches

for performing inference with such likelihoods, even when there are a very large number

of random effects (see, for example, the Template Model Builder (TMB) R package). Al-

though these methods are increasingly being used successfully in the spatial context, there

has tended to be more focus on Bayesian estimation approaches for spatio-temporal mod-

els in the literature. Either way, some type of approximation is needed (approximating

the integrals, approximating the models using linearization, or approximating the posterior

distribution through various Bayesian computational methods).
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Bayesian Hierarchical Modeling

The Bayesian hierarchical model (BHM) paradigm provides the estimation and inferen-

tial framework for many complex spatio-temporal models in the literature. Recall from

Technical Note 1.1 that we can decompose an arbitrary joint distribution in terms of a hier-

archical sequence of conditional distributions and a marginal distribution; for example,

[A,B,C] = [A | B,C][B | C][C].

In the context of our general geostatistical spatio-temporal model given in Section 4.2,

[Z,Y,β,θ] = [Z | Y,β,θ][Y | β,θ][β | θ][θ]
= [Z | Y,θǫ][Y | β,θy][θǫ][θy][β],

where θ contains all of the variance and covariance parameters from the data model and the

process model. Note that the first equality is based on the probability decomposition and

the second equality is based on writing θ = {θǫ,θy} and assuming that β, θǫ, and θy are

independent a priori. Now, Bayes’ Rule implies that

[Y,β,θ | Z] ∝ [Z | Y,θǫ][Y | β,θy][β][θǫ][θy]. (4.38)

For example, in the linear Gaussian case, [Z | Y,θǫ] is given by (4.3) and [Y | β,θy] is

given by (4.4). The prior distributions [β], [θǫ], and [θy] are then specified according to the

particular modeling choices made.

If we are interested in inference on the parameters, then we focus on the posterior dis-

tribution, [β,θ | Z]; if our interest is in prediction, we focus on the predictive distribution,

[Y | Z]. In principle, we can obtain these posterior distributions if we can evaluate the

normalizing constant in (4.38), which is a function of the data Z, specifically, the marginal

distribution [Z]. However, in the general spatio-temporal case (and in most hierarchical

models) there is no analytical form for this normalizing constant, and one must use numer-

ical approximations. A common and useful approach is to use Markov chain Monte Carlo

(MCMC) techniques to obtain (Markov dependent) Monte Carlo (MC) samples from the

posterior distribution and then to perform inference on the parameters and prediction of the

hidden process by summarizing these MC samples (see Algorithm 4.2 for a basic Gibbs

sampler MCMC algorithm). The advantage of the BHM approach is that parameter uncer-

tainty is accounted for directly. But, there is no “free lunch,” and this usually comes at a

cost of greater computational complexity.

In cases where the BHM computational complexity is formidable one can sometimes

find approximations that help simplify the computational burden. For example, just as

penalized-quasi-likelihood methods use Laplace approximations to deal with the integral

in (4.37), the integrated nested Laplace approximation (INLA) approach is sometimes well

suited for latent Gaussian spatial and spatio-temporal processes. The method exploits the

Laplace approximation in Bayesian latent-Gaussian models and does not require generating
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samples from the posterior distribution. Hence, it can often be used for quite large data sets

at reasonable computational expense. We use INLA to fit a latent separable spatio-temporal

model in Lab 4.5.

Another way to mitigate the computational burden of a BHM is to obtain estimates θ̂ of

the parameters θ outside of the fully Bayesian model as in empirical Bayesian estimation

(e.g., Carlin and Louis, 2010). As mentioned in Chapter 1, Cressie and Wikle (2011, pp.

23–24) call this approach empirical hierarchical modeling in the spatio-temporal context.

In this case, one focuses on the “empirical predictive distribution,” [Y | Z, θ̂]. The pri-

mary example of this in spatio-temporal statistics is S-T kriging as discussed in Section 4.2.

That is, rather than assigning prior distributions to the parameters, they are estimated and

the estimates are “plugged in” to the closed-form kriging formulas. This typically has the

advantage of substantially less computational burden but at a cost of overly liberal uncer-

tainty quantification. Ideally, one should take additional steps to account for the uncertainty

associated with using these plug-in estimates (e.g., via the bootstrap).

Algorithm 4.2: Basic Gibbs Sampler MCMC Algorithm

Consider the joint posterior distribution ofK random variables, w1, . . . , wK , given data,

Z, which we denote as [w1, . . . , wK | Z]. As is typical, assume that we do not know the

normalizing constant for this posterior distribution. Markov chain Monte Carlo (MCMC)

approaches can be used to obtain samples from such distributions indirectly. Specific-

ally, rather than compute the posterior distribution directly, one computes successive

simulations from a Markov chain constructed so that samples from the stationary dis-

tribution of this chain are equivalent to samples from the target posterior distribution.

That is, after some “burn-in” time, samples of the chain are viewed as samples simulated

from the posterior distribution. Note that these samples are statistically dependent. The

posterior distribution can be explored by various Monte Carlo summaries of the MCMC

samples.

One of the simplest MCMC algorithms is the Gibbs sampler, which is most appropriate

when the distributions of each of the random variables conditioned on all of the others

and the data (the “full-conditional” distributions) are available in closed form. For a

basic overview, see Gelman et al. (2014). A generic Gibbs sampler algorithm is given

below.

An initial step in the Gibbs sampler algorithm is to derive all of the full conditional

distributions in closed form. That is, derive

[w1|w2, . . . , wK ,Z], [w2|w1, w3, . . . , wK ,Z], . . . , [wK |w1, w2, . . . , wK−1,Z].

Obtain starting values: {w(0)
1 , . . . , w

(0)
K }

for i = 1, 2, . . . , Ngibbs do
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1. Sample w
(i)
1 ∼ [w1|w(i−1)

2 , . . . , w
(i−1)
K ,Z]

2. Sample w
(i)
2 ∼ [w2|w(i)

1 , w
(i−1)
3 , . . . , w

(i−1)
K ,Z]

...

K. Sample w
(i)
K ∼ [wK |w(i)

1 , . . . , w
(i)
K−1,Z]

end for

Discard the first b “burn-in” samples and use the remaining b+1, . . . , Ngibbs samples

as though they are coming from the posterior distribution [w1, . . . , wK |Z].

Note that this is one of the most basic MCMC algorithms. Many modifications exist

to improve efficiency and deal with the common case where the full conditional distri-

butions are not available in closed form (see, for example, Gelman et al., 2014, for an

overview).

4.6 Chapter 4 Wrap-Up

Time marches forward, but it can be valuable to look back at a changing landscape over a

period of time. We can describe how space and time interact using spatio-temporal mean

and covariance functions, without having to commit to a mechanistic model that expresses

the interaction dynamically. Hence, in this chapter we considered spatio-temporal model-

ing using what we have called the “descriptive” approach. Importantly, we made a clear

distinction between the data and the underlying latent process that represents the real-world

process upon which measurements were taken. That is, we need to think conditionally!

Thus, we considered a data model where the conditional distribution was Gaussian and

where the conditional distribution was non-Gaussian. In both cases, we conditioned on a

latent Gaussian spatio-temporal process.

We also considered the latent spatio-temporal Gaussian process by specifying the first-

order (mean) structure in terms of exogenous covariates (including functions of locations

of space or time) and the second-order dependence in terms of spatio-temporal covariance

functions. We discussed various assumptions for such models related to stationarity, sepa-

rability, and full symmetry. These sorts of representations are ideally suited for problems

where there are not too many observations or locations in time and space at which one wants

to predict, and where either we feel comfortable that we know the dependence structure (and

can represent it by covariance functions), or we just want to account for dependence and

do not care so much that the model is not all that realistic. In situations with large data sets

and/or large numbers of prediction locations, it is often more efficient computationally to

consider random-effects representations of the second-order structure using basis-function
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expansions. The basis-function construction also frees the modeler from having to develop

valid spatio-temporal covariance functions, as our conditional basis-function random ef-

fects induce a valid marginal covariance function. We considered this from the perspective

of basis functions that are defined in space and time, in space only, and in time only. The

descriptive-modeling framework is similar for each. In addition, we briefly showed how

these spatio-temporal mixed models using basis functions are related to GAM/GAMMs,

depending on the choice of basis functions and the estimation approach. An overview of

GAMs can be found in Wood (2017).

A potential issue with performing parameter inference in descriptive models with spa-

tial or spatio-temporal random effects is the problem of confounding. Traditionally, this

has not been as big a concern in spatial and spatio-temporal statistics because the focus

has been on prediction. But, as these methods have increasingly been used to account for

dependence when interpreting fixed effects, confounding has received much more attention

(e.g., Hodges and Reich, 2010; Hughes and Haran, 2013; Hanks et al., 2015).

An overview of Bayesian computation for spatial and spatio-temporal descriptive mod-

els is presented in Diggle and Ribeiro Jr. (2007) and Banerjee et al. (2015). The INLA

approximate-Bayesian methodology is discussed in Rue et al. (2009), Lindgren et al.

(2011), Blangiardo and Cameletti (2015), and Krainski et al. (2019). Descriptive mod-

els that can be formulated using simple dynamic equations in a Bayesian framework can

also be implemented using spTimer (Bakar and Sahu, 2015) and the function spDynLM

in spBayes (Finley et al., 2007). Computational methods for non-Bayesian approaches to

non-Gaussian spatial data can be found in Schabenberger and Gotway (2005). An overview

on using R to perform some exploratory and geostatistical modeling for spatio-temporal

data can be found in RESSTE Network et al. (2017).

There are a number of informative books on spatio-temporal statistical methodology.

These include Le and Zidek (2006),Cressie and Wikle (2011), Sherman (2011), Blangiardo

and Cameletti (2015), Diggle (2013), Mateu and Müller (2013), Baddeley et al. (2015),

Banerjee et al. (2015), Montero et al. (2015), Shaddick and Zidek (2015), and Christakos

(2017).

One of the most challenging aspects of characterizing the spatio-temporal dependence

structure, from either the marginal-covariance-model perspective or the conditional-basis-

function perspective, is the ability to model real-world interactions that occur across time

and space. In that case, the underlying processes are often best described by spatial fields

that evolve through time according to “rules” that govern the spatio-temporal variability.

That is, they represent a dynamical system. As we shall see in Chapter 5, spatio-temporal

models that explicitly account for these dynamics offer the benefit of providing more real-

istic models in general, and they can simplify model construction and estimation through

conditioning.
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Lab 4.1: Spatio-Temporal Kriging with gstat

In this Lab we go through the process of carrying out spatio-temporal universal kriging

using the semivariogram with the package gstat. We focus on the maximum temperature

data in the NOAA data set (Tmax) in July 1993. In addition to the packages used in Chapter

2 for data wrangling, we need RColorBrewer to color some of the surfaces that will be

produced.

library("sp")

library("spacetime")

library("ggplot2")

library("dplyr")

library("gstat")

library("RColorBrewer")

library("STRbook")

library("tidyr")

For S-T kriging of the maximum-temperature data set in July 1993, we need to fit a

parametric function to the empirical semivariogram vv computed in Lab 2.3. The code is

reproduced below for completeness.

data("STObj3", package = "STRbook")

STObj4 <- STObj3[, "1993-07-01::1993-07-31"]

vv <- variogram(object = z ~ 1 + lat, # fixed effect component

data = STObj4, # July data

width = 80, # spatial bin (80 km)

cutoff = 1000, # consider pts < 1000 km apart

tlags = 0.01:6.01) # 0 days to 6 days

A number of covariance-function models are available with the package gstat; see the gstat

vignette “spatio-temporal-kriging” for details by typing

vignette("spatio-temporal-kriging")

The first semivariogram we consider here corresponds to the spatio-temporal separa-

ble covariance function in (4.18) and (4.19). Observe from the vignette that a separable

covariance function (4.18) corresponds to a semivariogram of the form

γsep(h; τ) = sill ·
(
γ̄(s)(‖h‖) + γ̄(t)(|τ |)− γ̄(s)(‖h‖)γ̄(t)(|τ |)

)
,

where the “standardized” semivariograms γ̄(s) and γ̄(t) have separate nugget effects and

sills equal to 1.

A spatio-temporal semivariogram is constructed with gstat using the function vgmST.

The argument stModel = "separable" is used to define a separable model, while
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the function vgm is used to construct the individual semivariograms (one for space and

one for time). Several arguments can be passed to vgm. The first four, which we use

below, correspond to the partial sill, the model type, the range, and the nugget, respectively.

The argument sill that is supplied to vgmST defines the joint spatio-temporal sill. The

numbers used in their definition are initial values supplied to the optimization routine used

for fitting in the function fit.StVariogram, which fits sepVgm to vv. These initial

values should be reasonable – for example, the length scale φ can be set to a value that

spans 10% of the spatial/temporal domain, and the variances/sills can be set such that they

have similar orders of magnitude to the total variance of the measurements.

sepVgm <- vgmST(stModel = "separable",

space = vgm(10, "Exp", 400, nugget = 0.1),

time = vgm(10, "Exp", 1, nugget = 0.1),

sill = 20)

sepVgm <- fit.StVariogram(vv, sepVgm)

The second model we fit has the covariance function given in (4.20). For this model,

the function vgmST takes the joint semivariogram as an argument, as well as the sill

(sill) and the scaling factor (stAni), denoted by a in v, defined just below (4.20). This

parameter can be initially set by considering orders of magnitudes – if the spatial field is

evolving on scales of the order of hundreds of kilometers and the temporal evolution has a

scale on the order of days, then an initial value of stAni = 100 is reasonable.

metricVgm <- vgmST(stModel = "metric",

joint = vgm(100, "Exp", 400, nugget = 0.1),

sill = 10,

stAni = 100)

metricVgm <- fit.StVariogram(vv, metricVgm)

We can compare the fits of the two semivariograms by checking the mean squared error

of the fits. These can be found by directly accessing the final function value of the optimizer

used by fit.StVariogram.

metricMSE <- attr(metricVgm, "optim")$value

sepMSE <- attr(sepVgm, "optim")$value

Here the variable metricMSE is 2.1 while sepMSE is 1.4, indicating that the separable

semivariogram gives a better fit to the empirical semivariogram in this case. The fitted

semivariograms can be plotted using the standard plot function.

plot(vv, list(sepVgm, metricVgm), main = "Semi-variance")

Contour plots of the the fitted variograms are shown in the bottom panels of Figure 4.4. The

corresponding stationary S-T covariance function is obtained from (4.15).
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Next, we use the fitted S-T covariance models for prediction using S-T kriging, in this

case universal S-T kriging since we are treating the latitude coordinate as a covariate. First,

we need to create a space-time prediction grid. For our spatial grid, we consider 20 spatial

locations between 100◦W and 80◦W, and 20 spatial locations between 32◦N and 46◦N.

In the code below, when converting to SpatialPoints, we ensure that the coordinate

reference system (CRS) of the prediction grid is the same as that of the observations.

spat_pred_grid <- expand.grid(

lon = seq(-100, -80, length = 20),

lat = seq(32, 46, length = 20)) %>%

SpatialPoints(proj4string = CRS(proj4string(STObj3)))

gridded(spat_pred_grid) <- TRUE

For our temporal grid, we consider six equally spaced days in July 1993.

temp_pred_grid <- as.Date("1993-07-01") + seq(3, 28, length = 6)

We can then combine spat_pred_grid and temp_pred_grid to construct an STF

object for our space-time prediction grid.

DE_pred <- STF(sp = spat_pred_grid, # spatial part

time = temp_pred_grid) # temporal part

Since there are missing observations in STObj4, we first need to cast STObj4 into

either an STSDF or an STIDF, and remove the data recording missing observations. For

simplicity here, we consider the STIDF (considering STSDF would be around twice as

fast). Also, in order to show the capability of S-T kriging to predict across time, we omitted

data on 14 July 1993 from the data set.

STObj5 <- as(STObj4[, -14], "STIDF") # convert to STIDF

STObj5 <- subset(STObj5, !is.na(STObj5$z)) # remove missing data

Now we can call krigeST using STObj5 as our data.

pred_kriged <- krigeST(z ~ 1 + lat, # latitude trend

data = STObj5, # data set w/o 14 July

newdata = DE_pred, # prediction grid

modelList = sepVgm, # semivariogram

computeVar = TRUE) # compute variances

To plot the predictions and accompanying prediction standard errors, it is straightfor-

ward to use the function stplot. First, we define our color palette using the function

brewer.pal and the function colorRampPalette (see help files for details on what

these functions do).
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color_pal <- rev(colorRampPalette(brewer.pal(11, "Spectral"))(16))

Second, we call the stplot function with the object containing the results.

stplot(pred_kriged,

main = "Predictions (degrees Fahrenheit)",

layout = c(3, 2),

col.regions = color_pal)

The prediction (kriging) standard errors can be plotted in a similar way.

pred_kriged$se <- sqrt(pred_kriged$var1.var)

stplot(pred_kriged[, , "se"],

main = "Prediction std. errors (degrees Fahrenheit)",

layout = c(3, 2),

col.regions = color_pal)

Spatio-temporal kriging as shown in this Lab is relatively quick and easy to implement

for small data sets, but it starts to become prohibitive as data sets grow in size, unless some

approximation is used. For example, the function krigeST allows one to use the argument

nmax to determine the maximum number of observations to use when doing prediction.

The predictor is no longer optimal, but it is close enough to the optimal predictor in many

cases of practical interest.

Lab 4.2: Spatio-Temporal Basis Functions with FRK

In this Lab we shall focus on modeling the maximum temperature in July 1993 from data

in the NOAA data set using spatio-temporal basis functions. The packages we need are the

following:

library("dplyr")

library("FRK")

library("ggplot2")

library("gstat")

library("RColorBrewer")

library("sp")

library("spacetime")

library("STRbook")

library("tidyr")

The package FRK implements a low-rank approach to spatial and spatio-temporal mod-

eling known as fixed rank kriging (FRK). FRK considers the random-effects model (4.27),

sometimes known as the spatio-temporal random-effects model (Cressie et al., 2010), and
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provides functionality to the user for choosing the basis functions {φi(s; t) : i = 1, . . . , nα}
from the data.

A key difference between FRK and other geostatistical packages is that, in FRK, mod-

eling and prediction are carried out on a fine, regular discretization of the spatio-temporal

domain. The small grid cells are known as basic areal units (BAUs), and their primary util-

ity is to account for problems of change of support (varying measurement footprint), which

we do not consider in this Lab. The package is loaded by typing in the console

library("FRK")

For spatio-temporal modeling and prediction, FRK requires the user to provide the

point-level data as objects of class STIDF (see p. 23). Hence, for this exercise, we use

STObj5 from Lab 3.1, which we reconstruct below (for completeness) from STObj3.

data("STObj3", package = "STRbook") # load STObj3

STObj4 <- STObj3[, "1993-07-01::1993-07-31"] # subset time

STObj5 <- as(STObj4[, -14], "STIDF") # omit t = 14

STObj5 <- subset(STObj5, !is.na(STObj5$z)) # remove NAs

The spatio-temporal BAUs are constructed using the function auto_BAUswhich takes

several arguments, as shown below and detailed using the in-line comments. For more de-

tails see help(auto_BAUs). Note that as cellsize we chose c(1,0.75,1) which

indicates a BAU size of 1 degree longitude × 0.75 degrees latitude × 1 day – this choice

ensures that the BAUs are similar to the prediction grid used in Lab 3.1. The argument

convex is an “extension radius” used in domain construction via the package INLA. See

the help file of inla.nonconvex.hull for details.

BAUs <- auto_BAUs(manifold = STplane(), # ST field on the plane

type = "grid", # gridded (not "hex")

data = STObj5, # data

cellsize = c(1, 0.75, 1), # BAU cell size

convex = -0.12, # hull extension

tunit = "days") # time unit is "days"

The BAUs are of class STFDF since they are three-dimensional pixels arranged regu-

larly in both space and in time. To plot the spatial BAUs overlaid with the data locations,

we run

plot(as(BAUs[, 1], "SpatialPixels")) # plot pixel BAUs

plot(SpatialPoints(STObj5),

add = TRUE, col = "red") # plot data points

This generates the left panel of Figure 4.9. The BAUs, which we will also use as our pre-

diction grid, overlap all the data points. The user has other options in BAU construction; for

example, the following code generates hexagonal BAUs using a convex hull for a boundary.
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Figure 4.9: BAUs constructed for modeling and predicting maximum temperature from data

in the NOAA data set. Left: Gridded BAUs arranged within a non-convex hull enclosing

the data. Right: Hexagonal BAUs arranged within a convex hull enclosing the data.

BAUs_hex <- auto_BAUs(manifold = STplane(), # model on the plane

type = "hex", # hex (not "grid")

data = STObj5, # data

cellsize = c(1, 0.75, 1), # BAU cell size

nonconvex_hull = FALSE, # convex hull

tunit = "days") # time unit is "days"

Plotting proceeds in a similar fashion, except that the first line in the code chunk above now

becomes

plot(as(BAUs_hex[, 1], "SpatialPolygons"))

This allows for the fact the the BAUs are now (hexagonal) polygons and not rectangular

pixels. The resulting plot is shown in the right panel of Figure 4.9.

Next we construct the basis functions {φi(s; t) : i = 1, . . . , nα}. In FRK, these are

constructed by taking the tensor product of spatial basis functions with temporal basis func-

tions. Specifically, consider a set of rs spatial basis functions {φp(s) : p = 1, . . . , rs}, and

a set of rt temporal basis functions {ψq(t) : q = 1, . . . , rt}. Then we construct the set of

spatio-temporal basis functions as {φst,u(s, t) : u = 1, . . . , rsrt} = {φp(s)ψq(t) : p =
1, . . . , rs; q = 1, . . . , rt}.

The generic basis function that FRK uses by default is the bisquare function (see Fig-

ure 4.7) given by

b(s,v) ≡
{

{1− (‖v − s‖/r)2}2, ‖v − s‖ ≤ r,
0, otherwise,

Wikle, C. K., Zammit-Mangion, A., and Cressie, N. (2019), Spatio-Temporal Statistics with R, Boca Raton,

FL: Chapman & Hall/CRC. © 2019 Wikle, Zammit-Mangion, Cressie. https://spacetimewithr.org



178 Descriptive Spatio-Temporal Statistical Models

where r is the aperture parameter. Basis functions can be either regularly placed, or ir-

regularly placed, and they are often multiresolutional. We choose two resolutions below,

yielding rs = 94 spatial basis functions in total, and place them irregularly in the domain.

(Note that rs and the bisquare apertures are determined automatically by auto_basis.)

G_spatial <- auto_basis(manifold = plane(), # fns on plane

data = as(STObj5, "Spatial"), # project

nres = 2, # 2 res.

type = "bisquare", # bisquare.

regular = 0) # irregular

Temporal basis functions also need to be defined. We use the function local_basis

below to construct a regular sequence of rt = 20 bisquare basis functions between day 1

and day 31 of the month. Each of these bisquare basis functions is assigned an aperture of

2 days; that is, the support of each bisquare function is 4 days. The temporal grid is defined

through

t_grid <- matrix(seq(1, 31, length = 20))

The basis functions are constructed using the following commands.

G_temporal <- local_basis(manifold = real_line(), # fns on R1

type = "bisquare", # bisquare

loc = t_grid, # centroids

scale = rep(2, 20)) # aperture par.

Finally, we construct the rsrt = 1880 spatio-temporal basis functions by taking the

tensor product of the spatial and the temporal ones, using the function TensorP.

G <- TensorP(G_spatial, G_temporal) # take the tensor product

The basis functions G_spatial and G_temporal can be visualized using the plotting

function show_basis; see Figure 4.10. While the basis functions are of tensor-product

form, the resulting S-T covariance function obtained from the spatio-temporal random ef-

fects model is not separable in space and time.

In FRK, the fine-scale variation term at the BAU level, (4.28), is assumed to be Gaus-

sian with covariance matrix proportional to diag({σ2ν,i}), where {σ2ν,i : i = 1, . . . , ny} are

pre-specified at the BAU level (the constant of proportionality is then estimated by FRK).

Typically, these are related to some geographically related quantity such as surface rough-

ness. In our case, we simply set σ2ν,i = 1 for all i.
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Figure 4.10: Spatial and temporal basis functions used to construct the spatio-temporal

basis functions. Left: Locations of spatial basis functions (circles denote spatial support).

Right: Temporal basis functions.

BAUs$fs = 1

The fine-scale variance at the BAU level is confounded with the measurement-error

variance. In some cases, the measurement-error variance is known; when it is not (as in

this case), one can carry out a simple analysis to estimate the value of the semivariogram at

the origin. In this case, we simply assume that the nugget effect estimated when fitting the

separable covariance function in Lab 4.1 is the measurement-error variance – any residual

nugget component is then assumed to be the fine-scale variance introduced as a consequence

of the low-rank approximation to the process. The measurement-error variance is specified

in the std field in the data ST object.

STObj5$std <- sqrt(0.049)

The response variable and covariates are identified through a standard R formula. In this

case we use latitude as a covariate and set

f <- z ~ lat + 1

We are now ready to call the main function FRK, which estimates all the unknown

parameters in the models, including the covariance matrix of the basis-function coefficients

and the fine-scale variance. We need to supply the formula, the data, the basis functions, the

BAUs, and any other parameters configuring the expectation-maximization (EM) algorithm

used for finding the maximum likelihood estimates. To reduce processing time, we have set
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the number of EM-algorithm steps to 3. Convergence of the EM algorithm can be assessed

visually by setting print_lik = TRUE below.

S <- FRK(f = f, # formula

data = list(STObj5), # (list of) data

basis = G, # basis functions

BAUs = BAUs, # BAUs

n_EM = 3, # max. no. of EM iterations

tol = 0.01) # tol. on change in log-likelihood

Once the model is fitted, prediction proceeds via the function predict. If the argu-

ment newdata is not specified, then prediction is done at all the BAUs.

grid_BAUs <- predict(S)

The resulting object, grid_BAUs, is also of class STFDF, and plotting proceeds as per Lab

4.1 using the stplot function. The resulting predictions and prediction standard errors

are illustrated in Figure 4.6.

Lab 4.3: Temporal Basis Functions with SpatioTemporal

In this Lab we model the maximum temperature in the NOAA data set (Tmax) using tem-

poral basis functions and spatial random fields. Specifically, we use the model

Y (s; t) = x(s; t)′β +

nα∑

i=1

φi(t)αi(s) + ν(s; t), (4.39)

where x(s; t) are the covariates; β are the regression coefficients; {φi(t)} are the tem-

poral basis functions; {αi(s)} are coefficients of the temporal basis functions, modeled

as multivariate (spatial) random fields; and ν(s; t) is a spatially correlated, but temporally

independent, random process.

Spatio-temporal modeling using temporal basis functions can be carried out using the

package SpatioTemporal. For this Lab we require the following packages.

library("dplyr")

library("ggplot2")

library("gstat")

library("RColorBrewer")

library("sp")

library("spacetime")

library("SpatioTemporal")

library("STRbook")

library("tidyr")
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The space-time object used by SpatioTemporal is of class STdata and is created using

the function createSTdata. This function takes the data either as a space-wide matrix

with the row names containing the date and the column names the station ID, or as a data

frame in long form. Here we use the latter. This data frame needs to have the station ID

as characters in the field ID, the data in the field obs, and the date in the field date. A

new data frame of this form can be easily created using the function transmute from the

package dplyr.

data("NOAA_df_1990", package = "STRbook") # load NOAA data

NOAA_sub <- filter(NOAA_df_1990, # filter data to only

year == 1993 & # contain July 1993

month == 7 &

proc == "Tmax") # and just max. temp.

NOAA_sub_for_STdata <- NOAA_sub %>%

transmute(ID = as.character(id),

obs = z,

date = date)

The covariates that will be used to model the spatially varying effects also need to be

supplied as a data frame. In our case we only consider the station coordinates as covariates.

The station coordinates are extracted from the maximum temperature data as follows.

covars <- dplyr::select(NOAA_sub, id, lat, lon) %>%

unique() %>%

dplyr::rename(ID = id) # createSTdata expects "ID"

Now we can construct the STdata object by calling the function createSTdata.

STdata <- createSTdata(NOAA_sub_for_STdata, covars = covars)

The model used in SpatioTemporal assumes that ν(s; t) is temporally uncorrelated.

Consequently, all temporal variability needs to be captured through the covariates or the

basis functions. To check whether the data exhibit temporal autocorrelation (before adding

any temporal basis functions), one can use the plot function. For example, we plot the

estimated autocorrelation function for station 3812 in the left panel of Figure 4.11 (after

the mean is removed from the data). The plot suggests that the data are correlated (the

estimated lag-1 autocorrelation coefficient is larger than would be expected by chance at

the 5% level of significance).

plot(STdata, "acf", ID = "3812")

The role of the temporal basis functions is to adequately capture temporal modes of

variation. When modeling data over a time interval that spans years, one of these is typically
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a seasonal component. As another example, when modeling trace-gas emissions, one basis

function to use would be one that captures weekday/weekend cycles typically found in

gaseous pollutants (e.g., due to vehicular traffic). The package SpatioTemporal allows for

user-defined basis functions (see the example at the end of this Lab) or data-driven basis

functions (which we consider now). In both cases, the first temporal basis function, φ1(t),
is a constant; that is, φ1(t) = 1.

The basis functions extracted from the data are smoothed, left singular vectors (i.e.,

smoothed temporal EOFs) of the matrix Z̃, described in Technical Note 2.2. These make

up the remaining nα − 1 basis functions, upon which smoothing is carried out using

splines. In SpatioTemporal, these basis functions are found (or set) using the function

updateTrend.

STdata <- updateTrend(STdata, n.basis = 2)

We can see that the lag-1 autocorrelation coefficient is no longer significant (at the 5%

level) after adding in these basis functions; see the right panel of Figure 4.11. In practice,

one should add basis functions until temporal autocorrelation in the data (at most stations)

is considerably reduced. In this case study, it can be shown that 69% of stations record max-

imum temperature data that have lag-1 autocorrelation coefficients that are significant at the

5% level. On the other hand, with n.basis = 2 (i.e., with two temporal basis func-

tions for capturing temporal variation), the proportion of stations with residuals exhibiting

a significant lag-1 autocorrelation coefficient is 26%.

plot(STdata, "acf", ID = "3812")

The basis functions, available in STdata$trend, are shown in the top panel of Figure

4.8.

In SpatioTemporal, the spatial quantities {αi(s)} are themselves modeled as spatial

fields. Once the {φi(t)} are declared, empirical estimates of {αi(s)} can be found using

the function estimateBetaFields. Note that we use the Greek letter “alpha” to denote

these fields, which differs from the name “Beta” inside the command. The following and

all subsequent references to “Beta” and “beta” should be interpreted as representing spatial

fields {αi(s)}.

beta.lm <- estimateBetaFields(STdata)

The resulting object, beta.lm, contains two fields; beta (estimated coefficients) and

beta.sd (standard error of the estimates) with row names equal to the station ID, and

three columns corresponding to estimates of α1(s), α2(s), and α3(s), respectively. We

are interested in seeing whether the empirical estimates are correlated with our covariate,

latitude. To this end, the authors of SpatioTemporal suggest using the package plotrix,

and the function plotCI, to plot the estimates and covariance intervals against a covariate
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Figure 4.11: Left: Estimated autocorrelation function for the time series of maximum tem-

perature Tmax at Station 3812. Right: Same as left panel, but with the data first detrended

using an intercept and the two temporal basis functions shown in the top panel of Figure 4.8.

of choice. When plotting using plotCI, care should be taken that the ordering of the

stations in beta and beta.sd is the same as that if the covariate data frame. For example,

consider

head(row.names(beta.lm$beta))

## [1] "13865" "13866" "13871" "13873" "13874" "13876"

head(covars$ID)

## [1] 3804 3810 3811 3812 3813 3816

This illustrates a discrepancy, since the ordering of strings is not necessarily that of the or-

dered integers. For this reason we recommend employing best practice and always merging

(e.g., using left_join) on a column variable; in this case, we choose the integer version

of the field ID. In the following commands, we first convert the beta and beta.sd ob-

jects into data frames, add the column ID, join into a data frame BETA, and then combine

with covars containing the latitude data.

beta.lm$beta <- data.frame(beta.lm$beta)

beta.lm$beta.sd <- data.frame(beta.lm$beta.sd)

beta.lm$beta$ID <- as.integer(row.names(beta.lm$beta))
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Figure 4.12: Empirical estimates of α1(s), α2(s), and α3(s) at each station, with 95%

confidence intervals, plotted as a function of latitude.

BETA <- cbind(beta.lm$beta, beta.lm$beta.sd)

colnames(BETA) <- c("alpha1", "alpha2", "alpha3", "ID",

"alpha1_CI", "alpha2_CI", "alpha3_CI")

BETA <- left_join(BETA, covars, by = "ID")

Once BETA is constructed, the empirical estimates can be plotted using ggplot, with

geom_errorbar to also plot error bars, as follows.

ggplot(BETA) + geom_point(aes(x = lat, y = alpha1)) +

geom_errorbar(aes(x = lat,

ymin = alpha1 - 1.96*alpha1_CI,

ymax = alpha1 + 1.96*alpha1_CI)) +

ylab(expression(alpha[1](s))) +

xlab("lat (deg)") + theme_bw()

The three empirical estimates, plotted as a function of latitude, are shown in Figure 4.12.

The function α1(s) exhibits a strong latitudinal trend, as expected; α2(s) shows a weak

latitudinal trend; and α3(s) exhibits no trend. For this reason we model the expectations

of these fields as in (4.32)–(4.34). Note that in this model we do not consider any spatio-

temporal covariates, and hence the term x(s; t)′β = 0 in (4.39). This does not mean that

we do not have an intercept in our model: although it is random, the spatial field α1(s) acts

as a temporally invariant spatial covariate and includes a global space-time mean (α11 in

(4.32)), which is estimated.

We let the covariance functions cov(αi(s), αi(s + h)), i = 1, 2, 3, be exponential co-

variance functions without a nugget-effect term. In SpatioTemporal these are declared as

follows.
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cov.beta <- list(covf = "exp", nugget = FALSE)

All that remains for constructing the spatio-temporal model is to define the spatial co-

variance function of the zero-mean, temporally independent, residual process ν(s; t); see

(4.39). We choose this to be an exponential covariance function with a nugget effect to

account for measurement error. The argument random.effect = FALSE is used to

indicate that there is no random mean offset for the field at each time point.

cov.nu <- list(covf = "exp",

nugget = ~1,

random.effect = FALSE) # No random mean

# for each nu

The function to create the spatio-temporal model is createSTmodel. This takes as

data the object STdata, the covariates for the α-fields (an intercept and latitude for α1(s)
and α2(s), and just an intercept for α3(s); see (4.32)–(4.34)), the covariance functions of

the α-fields and the ν-field, and a list containing the names of station coordinate fields (lon

and lat).

locations <- list(coords = c("lon", "lat"))

LUR <- list(~lat, ~lat, ~1) # lat trend for phi1 and phi2 only

STmodel <- createSTmodel(STdata, # data

LUR = LUR, # spatial covariates

cov.beta = cov.beta, # cov. of alphas

cov.nu = cov.nu, # cov. of nu

locations = locations) # coord. names

In order to fit the spatio-temporal model to the data, we need to provide initial values of

the parameter estimates. The required parameter names can be extracted using the function

loglikeSTnames and, for our model, are as follows.

parnames <- loglikeSTnames(STmodel, all = FALSE)

print(parnames)

## [1] "log.range.const.exp" "log.sill.const.exp"

## [3] "log.range.V1.exp" "log.sill.V1.exp"

## [5] "log.range.V2.exp" "log.sill.V2.exp"

## [7] "nu.log.range.exp" "nu.log.sill.exp"

## [9] "nu.log.nugget.(Intercept).exp"

Noting that all parameters are log-transforms of the quantities of interest, we let all of the

initial values be equal to 3 (so that all initial ranges and sills are e3 ≈ 20). This seems

reasonable when the temperature is varying on the order of several degrees Fahrenheit, and

where the domain also spans several degrees (in latitude and longitude).
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We use the function estimate below to fit the spatio-temporal model to the data. This

may take several minutes on a standard desktop computer. In this instance, the resulting

object SpatioTemporalfit1 has been pre-computed and can be loaded directly from

STRbook by typing data("SpatioTemporalfit1", package = "STRbook").

x.init <- matrix(3, 9, 1)

rownames(x.init) <- loglikeSTnames(STmodel, all = FALSE)

SpatioTemporalfit1 <- estimate(STmodel, x.init)

The fitted coefficients for the parameters described by parnames above can be extracted

from the fitted object using the function coef.

x.final <- coef(SpatioTemporalfit1, pars = "cov")$par

Having fitted the model, we now predict at unobserved locations. First, we establish

the spatial and temporal grid upon which to predict; this proceeds by first initializing an

STdata object on a grid. We construct the grid following a very similar approach to what

was done in Lab 4.1.

## Define space-time grid

spat_pred_grid <- expand.grid(lon = seq(-100, -80, length = 20),

lat = seq(32, 46, length = 20))

spat_pred_grid$id <- 1:nrow(spat_pred_grid)

temp_pred_grid <- as.Date("1993-07-01") + seq(3, 28, length = 6)

## Initialize data matrix

obs_pred_wide <- matrix(0, nrow = 6, ncol = 400)

## Set row names and column names

rownames(obs_pred_wide) <- as.character(temp_pred_grid)

colnames(obs_pred_wide) <- spat_pred_grid$id

covars_pred <- spat_pred_grid # covariates

STdata_pred <- createSTdata(obs = obs_pred_wide, # ST object

covars = covars_pred)

Now prediction proceeds using the function predict, which requires as arguments

the model, the fitted model parameters, and the data matrix STdata_pred.

E <- predict(STmodel, x.final, STdata = STdata_pred)

The returned object E contains both the α-fields predictions as well as the Y -field prediction

at the unobserved locations. For example, E$beta$EX contains the conditional expecta-

tions of α1(s), α2(s), and α3(s) given the data. For conciseness, we do not illustrate the
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Figure 4.13: Predictions of Tmax in degrees Fahrenheit within a square lat-lon box defining

the spatial domain of interest, for six days in July 1993, using temporal basis functions. Data

for 14 July 1993 were deliberately omitted from the original data set.

plotting commands here. In the bottom panels of Figure 4.8, we show the conditional ex-

pectations, while in Figures 4.13 and 4.14 we show the predictions and prediction standard

errors of maximum temperature over six days of interest in July 1993.

Using SpatioTemporal for Modeling Spatial Effects of Temporal Covariates

In the first part of this Lab, we extracted the temporal basis functions from the data. How-

ever, SpatioTemporal can also be used to model the spatially varying effect of exogen-

ous temporal covariates. This can be done by manually setting the STdata$trend data

frame. When modeling temperature, interesting covariates may include a periodic signal

with period equal to one year, or an index such as the El Niño Southern Oscillation (ENSO)

Index.

To use a pre-existing covariate, we need to use the fnc argument in updateTrend

to define a function that takes a Date object as an input and returns the covariate at these

dates. The easiest way to do this in this example is to specify a look-up table in the function

containing the covariate for each date, but an interpolant can also be used when the covariate
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Figure 4.14: Prediction standard errors of Tmax in degrees Fahrenheit within a square lat-

lon box enclosing the spatial domain of interest, for six days in July 1993, using temporal

basis functions. Data for 14 July 1993 were deliberately omitted from the original data set.

has missing information for one or more dates.

As an exercise, repeat the Lab above, but this time use a single linear temporal trend as

a temporal covariate. The look-up table we need is just a two-column data frame containing

the date in the first column, and V1 (first covariate) in the second column. This can be set

up as follows.

all_dates <- NOAA_sub$date %>% unique() # dates

lookup <- data.frame(date = all_dates, # covariate (linear)

V1 = scale(as.numeric(all_dates)))

Type plot(lookup) to see the temporal covariate that we have just created. Now

we need to create the function that takes a Date object as input and returns the required

covariate values. This can be done using left_join.

## Function that returns the covariates in a data frame

## at the required dates

fnc <- function(dates) {
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left_join(data.frame(date = dates),

lookup, by = "date") %>%

select(-date)

}

Now we can call updateTrend with our covariate function as argument.

STdata <- updateTrend(STdata, fnc = fnc)

The rest of the code remains largely similar, except that now we are considering only

two temporal basis functions and not three (the first basis function is constant in time, and

the second one is linear in time). Changing the required parts of the code is left as an

exercise.

Lab 4.4: Non-Gaussian Spatio-Temporal GAMs with mgcv

Generalized additive models (GAMs) and generalized additive mixed models (GAMMs)

can be implemented quickly and efficiently with the package mgcv and the functions gam

and gamm, respectively. For a comprehensive treatment of GAMs and GAMMs and their

implementation through mgcv, see Wood (2017).

In this Lab we aim to predict the expected counts at arbitrary spatio-temporal locations,

from the vector of observed counts Z. The data we use are the Carolina wren counts in

the BBS data set described in Section 2.1. We require the package mgcv as well as dplyr,

tidyr, ggplot2 and STRbook.

library("dplyr")

library("ggplot2")

library("mgcv")

library("STRbook")

library("tidyr")

data("MOcarolinawren_long", package = "STRbook")

GAMs and GAMMs rely on constructing smooth functions of the covariates, and in

a spatio-temporal context these will inevitably include space and time. In this Lab we

consider the following simple GAM (see (4.36)):

g(Y (s; t)) = β + f(s; t) + ν(s; t), (4.40)

where g(·) is a link function, β is an intercept, the function f(s; t) is a random smooth

function of space and time, and ν(s; t) is a spatio-temporal white-noise error process.

In mgcv, the random function f(s; t) is generally decomposed using a separable spline

basis. Now, there are several basis functions that can be used to reconstruct f(s; t), some of
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which are knot-based (e.g., B-splines). For the purpose of this Lab, it is sufficient to know

that splines, of whatever order, are decomposed into a set of basis functions. Thus, f(s; t) is

decomposed as
∑r1

i=1 φ1i(s; t)α1i, where the {α1i} are unknown random effects that need

to be predicted, and the {φ1i} are given below.

There are a number of basis functions that can be chosen. Those derived from thin-plate

regression splines are convenient, as they are easily amenable to multiple covariates (e.g.,

functions of (s; t) ≡ (s1, s2; t)). Thin-plate splines are isotropic and invariant to rotation

but not invariant to covariate scaling. Hence, the use of thin-plate splines for fitting a curve

over space and time is not recommended, since units in time are different from those in

space.

To combine interacting covariates with different units, such as space and time, mgcv

implements a tensor-product structure, whereby the basis functions smoothing the individ-

ual covariates are combined productwise. That is,

f(s; t) =

r1∑

i=1

r2∑

j=1

φ1i(s)φ2j(t)αij ≡ φ(s; t)′α.

The function te forms the product from the marginals; for example, in our case this can

achieved by using te(lon,lat,t). Other arguments can be passed to te for added

functionality; for example, the basis-function class is specifed through bs, the number of

basis functions through k, and the dimension of each spline through d. In this case we

employ a thin-plate spline basis over longitude and latitude ("tp") and a cubic regression

spline over time ("cr"). A GAM formula for (4.40) is implemented as follows

f <- cnt ~ te(lon, lat, t, # inputs over which to smooth

bs = c("tp", "cr"), # types of bases

k = c(50, 10), # knot count in each dimension

d = c(2, 1)) # (s,t) basis dimension

We chose r1 = 50 basis functions for the spatial component and r2 = 10 for the temporal

component. These values were chosen after some trial and error. The number of knots

could have been set using cross-validation; see Chapter 3. In general, the estimated degrees

of freedom should be considerably lower than the total number of knots; if this is not the

case, probably the number of knots should be increased.

In Lab 3.4 we saw that the Carolina wren counts are over-dispersed. To account for this,

we use the negative-binomial distribution to model the response in (4.35) (a quasi-Poisson

model would also be suitable). The gam function is called in the code below, where we

specify the negative-binomial family and a log link (the function g(·) in (4.40)):

cnts <- gam(f, family = nb(link = "log"),

data = MOcarolinawren_long)
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The returned object is a gam object, which extends glm and lm objects (i.e., functions

that can be applied to glm and lm objects, such as residuals, can also be applied to gam

objects). The negative-binomial distribution handles over-dispersion in the data through a

size parameter r, such that, for a fixed mean, the negative-binomial distribution approaches

the Poisson distribution as r → ∞. In this case the estimated value for r (named Theta in

mgcv) is

cnts$family$getTheta(trans = 1)

## [1] 5.18

which is not large and suggestive of over-dispersion. Several graphical diagnostics relating

to the fit can be explored using the gam.check function.

To predict the field at unobserved locations using the hierarchical model, we first con-

struct a space-time grid upon which to predict.

MOlon <- MOcarolinawren_long$lon

MOlat <- MOcarolinawren_long$lat

## Construct space-time grid

grid_locs <- expand.grid(lon = seq(min(MOlon) - 0.2,

max(MOlon) + 0.2,

length.out = 80),

lat = seq(min(MOlat) - 0.2,

max(MOlat) + 0.2,

length.out = 80),

t = 1:max(MOcarolinawren_long$t))

Then we call the function predict which, when se.fit = TRUE, returns a list contain-

ing the predictions and their associated prediction standard errors.

X <- predict(cnts, grid_locs, se.fit = TRUE)

Specifically, the predictions and prediction standard errors are available in X$fit and

X$se.fit, respectively. These can be plotted using ggplot2 as follows.

## Put data to plot into data frame

grid_locs$pred <- X$fit

grid_locs$se <- X$se.fit

## Plot predictions and overlay observations

g1 <- ggplot() +

geom_raster(data = grid_locs,

aes(lon, lat, fill = pmin(pmax(pred, -1), 5))) +
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facet_wrap(~t, nrow = 3, ncol = 7) +

geom_point(data = filter(MOcarolinawren_long, !is.na(cnt)),

aes(lon, lat),

colour = "black", size = 3) +

geom_point(data=filter(MOcarolinawren_long, !is.na(cnt)),

aes(lon, lat, colour = log(cnt)),

size = 2) +

fill_scale(limits = c(-1, 5),

name = expression(log(Y[t]))) +

col_scale(name = "log(cnt)", limits=c(-1, 5)) +

theme_bw()

## Plot prediction standard errors

g2 <- ggplot() +

geom_raster(data = grid_locs,

aes(lon, lat, fill = pmin(se, 2.5))) +

facet_wrap(~t, nrow = 3, ncol = 7) +

fill_scale(palette = "BrBG",

limits = c(0, 2.5),

name = expression(s.e.)) +

theme_bw()

The plots are shown in Figures 4.15 and 4.16, respectively. One may also use the

plot.gam function on cnts to quickly generate plots of the tensor products.

Lab 4.5: Non-Gaussian Spatio-Temporal Models with INLA

Integrated Nested Laplace Approximation (INLA) is a Bayesian method that provides ap-

proximate marginal (posterior) distributions over all states and parameters. The package

INLA allows for a variety of modeling approaches, and the reader is referred to the book

by Blangiardo and Cameletti (2015) for an extensive treatment. Other useful resources are

Lindgren and Rue (2015) and Krainski et al. (2019).

In this Lab we shall predict expected counts at arbitrary space-time locations from the

vector of observed counts Z. The data we use are the Carolina wren counts in the BBS data

set described in Section 2.1. For this Lab, we require the package INLA as well as dplyr,

tidyr, ggplot2 and STRbook.

library("INLA")

library("dplyr")

library("tidyr")

library("ggplot2")

library("STRbook")

data("MOcarolinawren_long", package = "STRbook")
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Figure 4.15: Posterior mean of log(Y (·)) on a grid for t = 1 (the year 1994) to t = 21 (the

year 2014), based on a negative-binomial data model using the package mgcv. The log of

the observed count is shown in circles using the same color scale.

Figure 4.16: Posterior standard deviation (i.e., prediction standard error) of log(Y (·)) on a

grid for t = 1 (the year 1994) to t = 21 (the year 2014), based on a negative-binomial data

model using the package mgcv.

Wikle, C. K., Zammit-Mangion, A., and Cressie, N. (2019), Spatio-Temporal Statistics with R, Boca Raton,

FL: Chapman & Hall/CRC. © 2019 Wikle, Zammit-Mangion, Cressie. https://spacetimewithr.org



194 Descriptive Spatio-Temporal Statistical Models

Consider the data model,

Zt|Yt ∼ indep. NB(Yt, r), (4.41)

and the process model,

log(Yt) = Xtβ +Φtαt. (4.42)

In (4.41) and (4.42), Zt is an mt-dimensional data vector of counts at mt spatial locations,

E(Zt|Yt) = Yt, Yt represents the latent spatio-temporal mean process atmt locations, Φt

is an mt × nα matrix of spatial basis functions, r is the size parameter, and the associated

random coefficients are modeled as αt ∼ Gau(0,Cα).
In order to fit this hierarchical model, we need to generate the basis functions with which

to construct the matrices {Φt : t = 1, . . . , T}. In INLA, the basis functions used are typic-

ally “tent” (finite element) functions constructed over a triangulation of the domain. To es-

tablish a “boundary” for the domain, we can use the function inla.nonconvex.hull,

as follows.

coords <- unique(MOcarolinawren_long[c("loc.ID", "lon", "lat")])

boundary <- inla.nonconvex.hull(as.matrix(coords[, 2:3]))

The triangulation of the domain is then carried out using the function inla.mesh.2d.

This function takes several arguments (see its help file for details). Two of the most import-

ant arguments are max.edge and cutoff. When the former is supplied with a vector of

length 2, the first element is the maximum edge length in the interior of the domain, and

the second element is the maximum edge length in the exterior of the domain (obtained

from a small buffer that is automatically created to reduce boundary effects). The second

argument, cutoff, establishes the minimum edge length. Below we choose a maximum

edge length of 0.8 in the domain interior. This is probably too large for the problem at

hand, but reducing this considerably increases the computational burden when fitting the

model.

MOmesh <- inla.mesh.2d(boundary = boundary,

max.edge = c(0.8, 1.2), # max. edge length

cutoff = 0.1) # min. edge length

The mesh and the data locations are plotted using the following commands.

plot(MOmesh, asp = 1, main = "")

lines(coords[c("lon", "lat")], col = "red", type = "p")

These are shown in Figure 4.17. Note that the triangulation is irregular and contains an

extension with triangles that are larger than those in the interior of the domain.

As in the standard Gaussian case, the modeling effort lies in establishing the covariance

matrix of α ≡ (α′
1, . . . ,α

′
T )

′. When using INLA, typically the covariance matrix of α is
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Figure 4.17: Triangulation for the Carolina wren data locations over which the “tent” func-

tions are constructed (black), and the observation locations (red circles) are superimposed.

The blue line denotes the interior non-convex domain of interest that includes all the data

points.

chosen to be separable and of the form Σt(ρ) ⊗ Σs(τ, κ, ν) in such a way that its inverse

(i.e., the precision matrix) is sparse. The matrix Σt is constructed assuming an AR(1)

process, and thus it is parameterized using a single AR parameter, ρ. This parameter dictates

the correlation of α across time; the closer ρ is to 1, the higher the temporal correlation.

The matrix Σs is parameterized using three parameters, and it reflects the spatial covariance

required such that the reconstructed field is, approximately, a solution to the stochastic

partial differential equation (SPDE)

(κ2 −∆)α/2(τY (·)) = ǫ(·),

where ∆ is the Laplacian, ǫ(·) is a white-noise process, and τ controls the variance. The

resulting field has a Matérn covariance function. The parameter κ is a scaling parameter

that translates to a “practical” spatial correlation length (i.e., the spatial separation at which

the correlation is 0.1) l = (
√
8ν)/κ, while α = ν + d/2 is a smoothness parameter and d

is the spatial dimension. Here we fix ν = 1 (α = 2); this parameter is notoriously difficult

to estimate and frequently set using cross-validation. Note that there are other “practical”

length scales used to characterize the range of a correlation function (e.g., “effective range”

when the correlation is 0.05); our choice here is motivated by the INLA package that readily

provides a marginal distribution over the parameter l as defined here.

The SPDE can be constructed on the mesh using the function

inla.spde2.pcmatern. The pc in pcmatern is short for “penalized com-

plexity,” and it is used to refer to prior distributions over the hyperparameters that are both
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interpretable and that have interesting theoretical properties (Simpson et al., 2017). We

define prior distributions below over the range parameter l such that P (l < 1) = 0.01,

and over the marginal standard deviation such that P (σ > 4) = 0.01. We elicited these

distributions by looking at the count data – it is highly unlikely that the spatial correlation

length is less than 1 degree and that the expected counts are of the order of 50 or more (we

will use a log link, and e4 ≈ 55).

spde <- inla.spde2.pcmatern(mesh = MOmesh,

alpha = 2,

prior.range = c(1, 0.01),

prior.sigma = c(4, 0.01))

With the discretization shown in Figure 4.17, αt,i can be viewed as the weight of the

ith basis function at time t. The observation matrix Φt then maps the observations to the

finite-element space at time t; if the observation lies exactly on a vertex, then the associated

row in Φt will be 0 everywhere except for a 1 in the column corresponding to the vertex.

Otherwise, the row has three non-zero elements, with each representing the proportion be-

ing assigned to each vertex. For point predictions or areal averages, all rows in Φt sum to

1. Finally, for this example, we choose each element in Xt to be equal to 1. The coefficient

β0 is then the intercept.

The package INLA requires space and time to be “blocked up” with an ordering of the

variables in which space runs faster than time (i.e., the first few variables are spatial nodes

at the first time point, the next few are at the second time point, and so on). Hence we have

the block-matrix structure

log






Y1

...

YT





 =



X1

...

XT


β +



Φ1 0 . . .

...
. . .

...

0 . . . ΦT






α1
...

αT


 , (4.43)

where log(·) corresponds to a vector of elementwise logarithms. This can be further sim-

plified to

log(Y) = Xβ +Φα, (4.44)

where Y = (Y′
1, . . . ,Y

′
T )

′, X = (X′
1, . . . ,X

′
T )

′, Φ ≡ bdiag({Φt : t = 1, . . . , T}),
bdiag(·) constructs a block-diagonal matrix from its arguments, and α ≡ (α′

1, . . . ,α
′
T )

′.

A space-time index needs to be constructed for this representation. This index is a

double index that identifies both the spatial location and the associated time point. In

Lab 2.2 we saw how the function expand.grid can be used to generate such indices

from a set of spatial locations and time points. In INLA, we instead use the function

inla.spde.make.index. It takes as arguments the index name, the number of spatial

points in the mesh, and the number of time points.
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n_years <- length(unique(MOcarolinawren_long$t))

n_spatial <- MOmesh$n

s_index <- inla.spde.make.index(name = "spatial.field",

n.spde = n_spatial,

n.group = n_years)

The list s_index contains two important items, the spatial.field index, which runs

from 1 to n_spatial for n_years times, and spatial.field.group, which runs

from 1 to n_years, with each element replicated n_spatial times. Note how this is

similar to what one would obtain from expand.grid.

The matrix Φ in (4.44) is found using the inla.spde.make.A function. This func-

tion takes as arguments the mesh, the measurement locations loc, the measurement group

(in our case the year of observation) and the number of groups.

coords.allyear <- MOcarolinawren_long[c("lon", "lat")] %>%

as.matrix()

PHI <- inla.spde.make.A(mesh = MOmesh,

loc = coords.allyear,

group = MOcarolinawren_long$t,

n.group = n_years)

Note that

dim(PHI)

## [1] 1575 5439

This is a matrix equal in dimension to (number of observations) × (number of indices) of

our basis functions in space and time.

nrow(MOcarolinawren_long)

## [1] 1575

length(s_index$spatial.field)

## [1] 5439

The latent Gaussian model is constructed in INLA through a stack. Stacks are handy

as they allow one to define data, effects, and observation matrices in groups (e.g., one

accounting for the measurement locations and another accounting for the prediction loca-

tions), which can then be stacked together into one bigger stack. In order to build a stack we

need to further block up (4.43) into a representation amenable to the inla function (called

later on) as follows:

log(Y) = Πγ,
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where Π = (Φ,1) and γ = (α′, β0)
′.

A stack containing the data and covariates at the measurement locations is constructed

by supplying the data (argument data), the matrix Π (argument A), and information on

the vector γ. The stack is then tagged with the label "est".

## First stack: Estimation

n_data <- nrow(MOcarolinawren_long)

stack_est <- inla.stack(

data = list(cnt = MOcarolinawren_long$cnt),

A = list(PHI, 1),

effects = list(s_index,

list(Intercept = rep(1, n_data))),

tag = "est")

We next construct a stack containing the matrices and vectors defining the model at

the prediction locations. In this case, we choose the triangulation vertices as the prediction

locations; then Φ is simply the identity matrix, and X is a vector of ones. We store the

information on the prediction locations in df_pred and that for Φ in PHI_pred.

df_pred <- data.frame(lon = rep(MOmesh$loc[,1], n_years),

lat = rep(MOmesh$loc[,2], n_years),

t = rep(1:n_years, each = MOmesh$n))

n_pred <- nrow(df_pred)

PHI_pred <- Diagonal(n = n_pred)

The prediction stack is constructed in a very similar way to the estimation stack, but

this time we set the data values to NA to indicate that prediction should be carried out at

these locations.

## Second stack: Prediction

stack_pred <- inla.stack(

data = list(cnt = NA),

A = list(PHI_pred, 1),

effects = list(s_index,

list(Intercept = rep(1, n_pred))),

tag = "pred")

The estimation stack and prediction stack are combined using the inla.stack func-

tion.

stack <- inla.stack(stack_est, stack_pred)

All inla.stack does is block-concatenate the matrices and vectors in the individual

stacks. Denote the log-expected counts at the prediction locations as Y∗, the covariates as

X∗, and the basis functions evaluated at the prediction locations as Φ∗. Then
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[
log(Y)
log(Y∗)

]
=

[
Π

Π∗

]
γ,

recalling that γ = (α′, β0)
′. Note that, internally, some columns of Π and Π∗ correspond-

ing to unobserved states are not stored. For example Φ, internally, has dimension

dim(stack_est$A)

## [1] 1575 1702

The number of rows corresponds to the number of data points, while the number of columns

corresponds to the number of observed states (sum(colSums(PHI) > 0)) plus one for

the intercept term.

All that remains before fitting the model is for us to define the formula, which is a

combination of a standard R formula for the fixed effects and an INLA formula for the

spatio-temporal residual component. For the latter, we need to specify the name of the index

we created as the first argument (in this case spatial.field), the model (in this case

spde), the name of the grouping/time index (in this case spatial.field.group) and,

finally, the model to be constructed across groups (in this case an AR(1) model). The latter

modeling choice implies that E(αt+1 | αt) = ραt, t = 1, . . . , T − 1. Our choice for the

prior on the AR(1) coefficient, ρ, is a penalized complexity prior, such that P (ρ > 0) = 0.9
to reflect the prior belief that we highly doubt a negative temporal correlation.

## PC prior on rho

rho_hyper <- list(theta=list(prior = 'pccor1',

param = c(0, 0.9)))

## Formula

formula <- cnt ~ -1 + Intercept +

f(spatial.field,

model = spde,

group = spatial.field.group,

control.group = list(model = "ar1",

hyper = rho_hyper))

Now we have everything in place to run the main function for fitting the model, inla.

This needs the data from the stack (extracted through inla.stack.data) and the expo-

nential family (in this case negative-binomial). The remaining options indicate the desired

outputs. In the command given below, we instruct inla to fit the model and also to com-

pute the predictions at the required locations.
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output <- inla(formula,

data = inla.stack.data(stack, spde = spde),

family = "nbinomial",

control.predictor = list(A = inla.stack.A(stack),

compute = TRUE))

This operation takes a long time. In STRbook we provide the important components of this

object, which can be loaded through

data("INLA_output", package = "STRbook")

INLA provides approximate marginal posterior distributions for each αt in α and

{β, ρ, τ κ}. The returned object, output, contains all the results as well as summaries

of these results for quick analysis. From the posterior distributions over the precision para-

meter τ and scale parameter κ, we can readily obtain marginal posterior distributions over

the more interpretable variance parameter σ2 and practical range parameter l. Posterior

distributions of some of the parameters are shown in Figure 4.18, where we can see that the

AR(1) coefficient of the latent field, ρ, is large (most of the mass of the posterior distribution

is close to 1), and the practical range parameter, l, is of the order of 2 degrees (≈ 200 km).

The posterior distribution of the marginal variance of the latent field is largest between 2

and 4, These values suggest that there are strong spatial and temporal dependencies in the

data. We give code below for plotting the posterior marginal distributions shown in Figure

4.18.

output.field <- inla.spde2.result(inla = output,

name = "spatial.field",

spde = spde,

do.transf = TRUE)

## plot p(beta0 | Z)

plot(output$marginals.fix$Intercept,

type = 'l',

xlab = expression(beta[0]),

ylab = expression(p(beta[0]*"|"*Z)))

## plot p(rho | Z)

plot(output$marginals.hyperpar$`GroupRho for spatial.field`,

type = 'l',

xlab = expression(rho),

ylab = expression(p(rho*"|"*Z)))

## plot p(sigma^2 | Z)

plot(output.field$marginals.variance.nominal[[1]],

type = 'l',

xlab = expression(sigma^2),
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Figure 4.18: Marginal posterior distributions of β0, the temporal correlation ρ, the variance

σ2, and the range parameter l.

ylab = expression(p(sigma^2*"|"*Z)))

## plot p(range | Z)

plot(output.field$marginals.range.nominal[[1]],

type = 'l',

xlab = expression(l),

ylab = expression(p(l*"|"*Z)))

We provide the prediction (posterior mean) and prediction standard error (posterior

standard deviation) for log(Y (·)) in Figures 4.19 and 4.20, respectively. These figures were

generated by linearly interpolating the posterior mean and posterior standard deviation of

log(Y∗) on a fine grid. Note how a high observed count at a certain location in one year

affects the predictions at the same location in neighboring years, even if unobserved.

Plotting spatial fields, such as those shown in Figures 4.19 and 4.20, from the INLA

output can be a bit involved since each prediction and prediction standard error of αt for

each t needs to be projected spatially. First, we extract the predictions and prediction stand-

ard errors of α = (α′
1, . . . ,α

′
T )

′ as follows.
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Figure 4.19: Posterior mean of log(Y (·)) on a grid for t = 1 (the year 1994) to t = 21 (the

year 2014), based on a negative-binomial data model using the package INLA. The log of

the observed count is shown in circles using the same color scale.

Figure 4.20: Posterior standard deviation (i.e., prediction standard error) of log(Y (·)) on a

grid for t = 1 (the year 1994) to t = 21 (the year 2014), based on a negative-binomial data

model using the package INLA.

index_pred <- inla.stack.index(stack, "pred")$data

lp_mean <- output$summary.fitted.values$mean[index_pred]
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lp_sd <- output$summary.fitted.values$sd[index_pred]

Next, we need to create a spatial grid upon which we map the predictions and

their associated prediction standard errors. This can be constructed using the function

expand.grid. We construct an 80 × 80 grid below.

grid_locs <- expand.grid(

lon = seq(min(MOcarolinawren_long$lon) - 0.2,

max(MOcarolinawren_long$lon) + 0.2,

length.out = 80),

lat = seq(min(MOcarolinawren_long$lat) - 0.2,

max(MOcarolinawren_long$lat) + 0.2,

length.out = 80))

The function inla.mesh.projector provides all the information required, based

on the created spatial grid, to carry out the mapping.

proj.grid <- inla.mesh.projector(MOmesh,

xlim = c(min(MOcarolinawren_long$lon) - 0.2,

max(MOcarolinawren_long$lon) + 0.2),

ylim = c(min(MOcarolinawren_long$lat) - 0.2,

max(MOcarolinawren_long$lat) + 0.2),

dims = c(80, 80))

Now we have everything in place to map eachαt on our spatial grid. We iterate through

t, and for each t = 1, . . . , T we map both the prediction and prediction standard errors of

αt on the spatial grid as follows.

pred <- sd <- NULL

for(i in 1:n_years) {

ii <- (i-1)*MOmesh$n + 1

jj <- i*MOmesh$n

pred[[i]] <- cbind(grid_locs,

z = c(inla.mesh.project(proj.grid,

lp_mean[ii:jj])),

t = i)

sd[[i]] <- cbind(grid_locs,

z = c(inla.mesh.project(proj.grid,

lp_sd[ii:jj])),

t = i)

}

The last thing we need to do is compile all the data (which are in lists) into one data

frame for plotting with ggplot2. We concatenate all the list elements rowwise and remove

those elements that are NA because they fall outside of the support of any basis function.
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pred <- do.call("rbind", pred) %>% filter(!is.na(z))

sd <- do.call("rbind", sd) %>% filter(!is.na(z))

The data frames pred and sd now contain the spatio-temporal predictions and spatio-

temporal prediction standard errors. Plotting of these fields using ggplot2 is left as an

exercise for the reader.
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Chapter 5

Dynamic Spatio-Temporal Models

Chapter 4 presented the “descriptive” approach to incorporating spatio-temporal statistical

dependence into models. This chapter discusses the “dynamic” approach, closer to that

holy grail of causation that scientists talk and theorize about and that often drives their

experiments. In contrast to descriptive models, which fit means and covariances to spatio-

temporal data, dynamic models can more easily use scientific knowledge and probability

distributions to capture the evolution of current and future spatial fields from past fields.

To convince yourself that this dynamic approach has merit, just look around. If you

have ever been mesmerized by waves breaking on the beach, storm clouds building on the

horizon, or huge flocks of birds flying collectively in formation, you have witnessed spatio-

temporal dynamics in action. What these processes (and many others) have in common is

the spatial arrangement of the objects or fields changing, or evolving, from one moment to

the next. This is how nature works at the macro scale – the current state of nature evolves

from past states. Why does this matter if you are interested in simply modeling data that are

indexed in space and time? Don’t the descriptive models presented in Chapter 4 represent

nature as well?

The short answer to the second question is “yes,” but less directly. As we discuss in this

chapter, it is difficult to describe all the joint and marginal dependence structures that exist

in nature and respect this natural dynamic evolution – which answers the first question.

While there are important differences, common to both Chapter 4 and this chapter is a

statistical modeling approach where we always attempt to account for uncertainty, both in

our understanding of the process of interest and in the data we observe.

The primary focus of this chapter is on linear dynamic spatio-temporal models

(DSTMs) in the univariate context. Although it is reasonable, and often quite useful, to

consider such processes to be continuous in time, for the sake of brevity we focus here

on the more practical case where time has been discretized. However, we note that many

science-oriented mechanistic models are specified from a continuous-time perspective (e.g.,

stochastic differential equations), and these are used to motivate the dynamic portion of the
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DSTM. It is beyond the scope of this book to take a continuous-time perspective, although

it does fit into the DSTM framework.

For readers who have more of a time-series background, the DSTM could be thought of

as a time series of spatial processes. We could consider an alternative perspective where the

spatio-temporal process is a spatial process of time series, but the former perspective de-

scribes more naturally the dynamic evolutional aspect of the type of real-world phenomena

discussed above. In particular, such a framework allows one not only to make predictions

of spatial processes into the future, but also to make inference on parameters of models that

correspond to mechanistic (e.g., physical or biological or economic . . . ) processes. This

gives DSTMs a powerful insight into causative mechanisms.

We start the chapter with a general hierarchical DSTM formulation in Section 5.1, fol-

lowed by a more complete discussion of the special case of the linear Gaussian DSTM in

Section 5.2. This includes brief discussion of data models, process models, and parame-

ter models. Section 5.3 considers approaches for dealing with the curse of dimensionality

in spatial processes and parameter spaces that is often present in DSTM settings. Section

5.4 gives a brief discussion of nonlinear DSTMs. More details on the technical aspects

are given in a number of appendices: we present some standard estimation and prediction

algorithms in Appendix C and examples of parameter reduction and process motivation

through mechanistic models in Appendix D. Finally, Appendices E and F present case

studies on mechanistically motivated prediction of Mediterranean winds and a machine-

learning-motivated nonlinear DSTM for forecasting tropical Pacific SSTs, respectively.

5.1 General Dynamic Spatio-Temporal Models

As discussed in Chapter 1, we like to consider statistical models from a hierarchical mod-

eling (HM) perspective. In the context of DSTMs, this means that at a minimum we must

specify: a “data model” that gives a model for the data, conditioned on the true process of

interest and some parameters; a “process model” that specifies the dynamic evolution of

the spatio-temporal process, given some parameters; and either models for the parameters

from the previous two stages (Bayesian hierarchical model, BHM ), or “plug-in” estimates

of the parameters (empirical hierarchical model, EHM). In this section we give a general

overview of hierarchical modeling in the context of a DSTM.

Recall from our preamble that we are considering discrete time here with temporal

domain Dt = {0, 1, 2, . . .}, where we assume a constant time increment ∆t = 1 (without

loss of generality). We shall consider spatial locations for our observations and our latent

process to be in some spatial domain Ds (which we may consider continuous or discrete

and finite, depending on the context). The data can potentially come from anywhere and

any time in the spatial and temporal domains; we denote data and potential data by {Zt(s) :
s ∈ Ds; t = 0, 1, . . .}, although only a subset is actually observed. The latent process is

denoted by {Yt(s) : s ∈ Ds; t = 0, 1, . . .}, and we may make inference on Yt0(s0), even
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though there is no datum Zt0(s0). Note that, unlike the models presented in Chapter 4, we

change notation slightly and use a subscript t to represent time here, as is customary for

discrete-time processes with Dt = {0, 1, 2, . . .}.

5.1.1 Data Model

We begin with a data model that describes the relationship between the observations and

the latent spatio-temporal process. Generally, we could write the data model in a DSTM as

Zt(·) = Ht(Yt(·),θd,t, ǫt(·)), t = 1, . . . , T,

where Zt(·) corresponds to the data at time t (and we use (·) to represent arbitrary spatial

locations), Yt(·) is the latent spatio-temporal process of interest, with a linear or nonlinear

mapping, Ht, that connects the data to the latent process. The data-model error, which

is typically measurement error and sometimes small-scale spatio-temporal variability, is

given by ǫt(·). Finally, data-model parameters, which themselves may vary spatially and/or

temporally, are represented by the vector θd,t. An important assumption here, and in many

hierarchical representations of DSTMs, is that the data Zt(·) are independent (in time)

when conditioned on the true process Yt(·) and parameters θd,t. Under this conditional-

independence assumption, the joint distribution of the data conditioned on the true process

and parameters can be represented in product form,

[{Zt(·)}Tt=1 |{Yt(·)}Tt=1, {θd,t}Tt=1] =
T∏

t=1

[Zt(·) | Yt(·),θd,t]. (5.1)

This is one of two key independence/dependence assumptions in DSTMs (the other is dis-

cussed in Section 5.1.2 below). Most applications consider the component distributions on

the right-hand side of (5.1) to be Gaussian, but it is not uncommon to consider other mem-

bers of the exponential family of distributions (see Section 5.2.2 below). Indeed, a broader

class of data models than the familiar Gaussian model is fairly easy to consider so long as

the observations are conditionally independent given the true process. We consider specific

examples of data models in Section 5.2.1.

5.1.2 Process Model

Perhaps the most important part of a DSTM is the decomposition of the joint distribution of

the process in terms of conditional distributions that respect the time evolution of the spatial

process. With Yt(·) corresponding to the spatial process at time t, we can always factor the
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joint distribution using the chain rule of conditional probabilities:

[Y0(·), Y1(·), . . . , YT (·)] = [YT (·)|YT−1(·), . . . , Y0(·)]
× [YT−1(·)|YT−2(·), . . . , Y0(·)] × . . .

× [Y2(·)|Y1(·), Y0(·)]
× [Y1(·)|Y0(·)]
× [Y0(·)],

where, for notational simplicity, the dependence of these distributions on parameters has

been suppressed. By itself, this decomposition is not all that useful because it requires a

separate conditional model for Yt(·) at each t. However, if we make a modeling assumption

that utilizes conditional independence, then such a hierarchical decomposition can be quite

useful. For example, we could make a Markov assumption; that is, conditioned on the

past, only the recent past is important to explain the present. Under the first-order Markov

assumption that the process at time t conditioned on all of the past is only dependent on the

most recent past (and an additional modeling assumption that this process only depends on

the current parameters), we get a very useful simplification,

[Yt(·)|Yt−1(·), . . . , Y0(·), {θp,t}Tt=0] = [Yt(·)|Yt−1(·),θp,t], (5.2)

for t = 1, 2, . . . , so that

[Y0(·), Y1(·), . . . , YT (·)|{θp,t}Tt=0] =

(
T∏

t=1

[Yt(·)|Yt−1(·),θp,t]
)
[Y0(·)|θp,0]. (5.3)

This is the second of the key assumptions that is usually made for DSTMs (the first was

discussed above in Section 5.1.1).

This first-order-Markov assumption, which is simple but powerful in spatio-temporal

statistics, holds when {Yt(·)} follows a dynamic model of the form

Yt(·) = M(Yt−1(·),θp,t, ηt(·)), t = 1, 2, . . . , (5.4)

where θp,t are parameters (possibly with spatial or temporal dependence) that control the

process evolution described by the evolution operator M, and ηt(·) is a spatial noise (er-

ror) process that is independent in time (i.e., ηt(·) and ηr(·) are independent for r 6= t).
In general, this model can be linear or nonlinear and the associated conditional distribu-

tion, [Yt(·) |Yt−1(·)], can be Gaussian or non-Gaussian. As in autoregressive modeling in

time series, one can make higher-order Markov assumptions in this case as well, which

requires additional time lags of the spatial process to be included on the right-hand side of

the conditioning symbol “ | ” in the component distributions of (5.3). We focus primarily

on the first-order-Markov case here, which is usually assumed; however, note that one can

always reformulate a higher-order Markov model as a first-order model, albeit increasing
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the dimensionality of the process, so the first-order representation in terms of probability

distributions is actually quite general. One also needs to specify a distribution for the ini-

tial state, [Y0(·)|θp,0] or condition on it. We consider specific examples of DSTM process

models in Section 5.2.1.

5.1.3 Parameters

A BHM requires distributions to be assigned to the parameters defined in the data model

and the process model, namely {θd,t,θp,t}. Specific distributional forms for the parameters

(e.g., spatially or temporally varying dependence on auxiliary covariate information) de-

pend strongly on the problem of interest. Indeed, as mentioned in Chapter 1, one of the

most important aspects of “deep” hierarchical modeling is the specification of these distri-

butions, especially when one must deal with the curse of dimensionality. In that case, the

primary modeling challenge in DSTMs is to come up with ways to effectively reduce the

parameter space. This is illustrated in Section 5.2.1 with regard to linear DSTMs.

Despite the power of the BHM, in many cases it is possible and sufficient to simply

estimate the parameters in an EHM context. This is commonly done in state-space models

in time series and often utilizes the expectation-maximization (EM) algorithm or, as is done

in the engineering literature, “state augmentation,” where the process “vector” is augmented

by the parameters. Again, the choice of the estimation approach is very problem-specific.

We give a general EM algorithm for linear DSTMs in Appendix C.2.

5.2 Latent Linear Gaussian DSTMs

For illustration, we consider in this section the simplest (yet, most widely used) DSTM –

where the process models in (5.2) are assumed to have additive Gaussian error distributions,

and the evolution operator M in (5.4) is assumed to be linear. Let us suppose that we are

interested in a latent process {Yt(si)} at a set of locations given by {si : i = 1, . . . , n}, and

that we have data at locations {rjt : j = 1, . . . ,mt; t = 0, 1, . . . , T} (i.e., there could be a

different number of data locations for each observation time, but we assume there is a finite

set of m possible data locations to be considered; so mt ≤ m).

For simplicity, unless noted otherwise, we assume that the “locations” of interest can

have either point or areal support (and, possibly different supports for the prediction loca-

tions and data locations).

5.2.1 Linear Data Model with Additive Gaussian Error

Consider the mt-dimensional data vector, Zt ≡ (Zt(r1t), . . . , Zt(rmtt))
′, and the n-

dimensional latent-process vector, Yt ≡ (Yt(s1), . . . , Yt(sn))
′, that we wish to infer. For

the jth observation at time t, the linear data model with additive Gaussian error is written
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as

Zt(rjt) = bt(rjt) +

n∑

i=1

ht,jiYt(si) + ǫt(rjt), (5.5)

for t = 1, . . . , T , where bt(rjt) is an additive offset term for the jth observation at time t,
{ht,ji}ni=1 ≡ h′

t,j are coefficients that map the latent process to the jth observation at time

t, and the error term ǫt(·) is independent of Yt(·). Since j = 1, . . . ,mt, the data model can

be written in vector–matrix form as

Zt = bt +HtYt + εt, εt ∼ Gau(0,Cǫ,t), (5.6)

where bt is themt-dimensional offset term, Ht is themt×nmapping matrix (note that h′
t,j

corresponds to the jth row of Ht), and Cǫ,t is anmt×mt error covariance matrix, typically

taken to be diagonal. Each of the data-model components is described briefly below.

Latent Spatio-Temporal Dynamic Process

The latent dynamic spatio-temporal process is represented by Yt. This is where most of the

modeling effort is focused in the latent linear DSTM framework. It is convenient in many

situations to assume that Yt has mean zero; however, we present an alternative perspective

in Section 5.3 below. As mentioned previously, we shall focus on first-order Markov models

to describe the evolution of Yt.

Additive Offset Term

There are instances where there are potential biases between the observations and the pro-

cess of interest, or where one would like to be able to model {Yt(·)} as a mean-zero process.

That is, the additive offset term, bt, accounts for non-dynamic spatio-temporal structure in

the data vector, Zt, that allows us to consider Yt to have mean zero. One might still be

interested scientifically in predicting the sum bt + HtYt in (5.6). We may assume that

the additive offset term bt(rjt) is fixed through time, space, or constant across space and

time (e.g., bt(rjt) ≡ b(rjt), bt(rjt) ≡ bt, or bt(rjt) ≡ b, respectively), or we may de-

fine it in terms of covariates (e.g., bt(rjt) ≡ x′
t,jβ, or bt(rjt) ≡ x′

tβj , where xt,j and xt

are q-dimensional vectors of covariates and β and βj are q-dimensional parameter vec-

tors). Alternatively, we may consider the offset parameters to be either spatial or temporal

random processes with distributions assigned at the next level of the model hierarchy (e.g.,

bt ∼ Gau(Xtβ,Cb), where Cb is a positive-definite matrix constructed using the methods

described in Chapter 4).

Observation Mapping Function (or Matrix)

The observation mapping matrix Ht has elements {ht,ji} that are typically assumed known.

They can be any linear basis that relates the process at the prediction locations to the ob-

servations. For example, it is often quite useful to let ht,j correspond to a simple incidence
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vector (i.e., a vector of ones and zeros), so that each data location is associated with one or

more of the process locations. The incidence vector can easily accommodate missing data

or can serve as an “interpolator” such that each observation is related to some weighted

combination of the process values.

In this simple illustration, consider the single observation equation (5.5) where n =
3. If h′

t,j = (0, 0, 1), it indicates that the observation Zt(rjt) corresponds to the process

value, Yt(s3), at time t. This is especially useful if the locations of the prediction grid are

very close to (or a subset of) the observation locations and consequently are considered

coincident. If h′
t,j = (0.2, 0.8, 0), then the observation at location rjt corresponds to a

weighted sum of the process at locations s1 and s2, with more weight being given to location

s2. More generally, these weights can provide a simple way to deal with different spatial

supports and orientations of the observations and the process. For example, the weights can

correspond to the area of overlap between observation supports and process supports (see

Chapter 7 of Cressie and Wikle, 2011, for details).

R tip: Recall from Section 2.2 that finding the intersections (areas or points of overlap)

across spatial or spatio-temporal polygons, points, and grids can be done in a straight-

forward manner using the function over from the packages sp and spacetime. This

function can hence be used to construct the mapping matrices {Ht} in (5.6).

Finally, in the situation where the observation locations are a subset of the process

locations and mt < n, one has missing data, and this is easily accommodated via the

mapping matrix. For example, if mt = 2 and n = 3, then Zt ≡ (Zt(r1t), Zt(r2t))
′,

Yt ≡ (Yt(s1), Yt(s2), Yt(s3))
′, and εt ≡ (ǫt(r1t), ǫt(r2t))

′. If r1t = s2 and r2t = s3, the

mapping matrix in (5.6) is given by the incidence matrix

Ht =

(
0 1 0
0 0 1

)
, (5.7)

which indicates that observation Zt(r1t) corresponds to process value Yt(s2), observation

Zt(r2t) corresponds to process value Yt(s3), and process value Yt(s1) does not have a

corresponding observation at time t. This way to accommodate missing information is very

useful for HMs, because it allows one to focus the modeling effort on the latent process

{Yt(·)}, and the process is oblivious to which data are missing. Some would argue that

a downside of this is the need to pre-specify the locations at which one is interested in

modeling the process, but, with a sufficiently fine grid, this could effectively be everywhere

in the spatial domain, Ds.

Although it is possible in principle to parameterize the mapping matrix and/or estimate

it directly in some cases, we shall typically assume that it is known. Otherwise, one would

have to be careful when specifying and estimating the process-model parameters to mitigate

identifiability problems.
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R tip: Recall from Section 4.4.1 that matrices such as that given in (5.7) tend to have

many zeros and hence are sparse. Two R packages that cater to sparse matrices are Ma-

trix and spam. Sparse matrices are stored and operated on differently than the standard

dense R matrices, and they have favorable memory and computational properties. How-

ever, sparse matrix objects should only be used when the number of non-zero entries is

small, generally on the order of 5% or less of the total number of matrix elements.

Error Covariance Matrix

In the linear Gaussian DSTM, the additive error process {ǫt(rjt)} is assumed to have mean

zero, is Gaussian, and can generally include dependence in space or time (although we will

typically assume that the errors are independent in time, as is customary). So, when consid-

ering ǫt(·) at a finite set of mt observation locations, namely εt ≡ (ǫt(r1t), . . . , ǫt(rmtt))
′,

we need to specify time-varying covariance matrices {Cǫ,t}. In practice, given that most

of the interesting dependence structure in the observations is contained in the process, and

recalling that in the data model we are conditioning on that process, the structure of Cǫ,t

should be pretty simple. Indeed, there is often an assumption that these data-model errors

are independent with constant (in time and space) variance, so that Cǫ,t = σ2ǫ Imt , where

σ2ǫ represents the measurement-error variance. If this assumption is not reasonable, then in

situations where the data-model error covariance matrix is assumed constant over time (e.g.,

Cǫ,t = Cǫ) and mt = m, one might estimate the m ×m covariance matrix Cǫ directly if

m is not too large (see Appendix C.2), or one might parameterize Cǫ. For example, in the

case where the data-model error variances are heteroskedastic in space, one might model

Cǫ = diag(vǫ), and estimate the elements of vǫ. Alternatively, if there is spatial depend-

ence one might parameterize Cǫ in terms of some valid spatial covariance functions (e.g.,

the Matérn class). The specific choice is very problem-dependent. It is important to recall

the central principle of hierarchical modeling discussed in Chapter 1, in Section 3.5, and in

greater detail in Section 4.3, which is that we attempt to place as much of the dependence

structure as possible in the conditional mean, which simplifies the conditional-covariance

specification dramatically.

5.2.2 Non-Gaussian and Nonlinear Data Model

Recall the general exponential family data model from Section 4.5, rewritten here to cor-

respond to the discrete-time case. For t = 1, 2, . . . , let

Zt(s)|Yt(s), γ ∼ EF (Yt(s), γ),

where EF corresponds to a distribution from the exponential family with scale parameter

γ and mean Yt(s). Now, consider a transformation of the mean response g(Yt(s)) ≡ Ỹt(s)
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using a specified monotonic link function g(·). Using a standard GLMM framework, we

can model the transformed process Ỹt(s) as a latent Gaussian DSTM (Section 5.2.3) with

or without the use of process/parameter reduction methods (Section 5.3). Note that we

can also include a “mapping matrix” to this non-Gaussian data model as we did with the

Gaussian data model in Section 5.2.1. That is, in a matrix formulation we could consider

Zt|Yt, γ ∼ EF (HtYt, γ),

where the distribution EF is taken elementwise, and Ht is an incidence matrix or change-

of-support matrix as described in Section 5.2.1.

It is sometimes useful to consider a nonlinear transformation of the latent process

{Yt(·)} in a data model even if the error term is Gaussian. For example, analogous to

equation (7.39) in Cressie and Wikle (2011), one can modify (5.6) above to accommodate

a transformation of the elements of the process vector:

Zt = bt +HtY
a
t + εt, εt ∼ Gau(0,Cǫ,t), (5.8)

where the coefficient {−∞ < a < ∞} corresponds to a power transformation (applied to

each element of Yt), which is one of the simplest ways to accommodate nonlinear or non-

Gaussian processes in the data model. In general, {Ya
t } may not generate a linear Gaussian

model, but the additivity of the errors {εt} is an important part of (5.8). As an example, if

{Yt(·)} is positive valued, then this is analogous to the famed Box–Cox transformation. In

some applications it is reasonable to assume that the transformation power a in (5.8) may

vary with space or time, and may depend on covariates.

As with non-dynamic spatio-temporal models with non-Gaussian errors (Chapter 4),

computation for estimation and prediction is more problematic when one considers non-

Gaussian or nonlinear data models.

5.2.3 Process Model

Linear Markovian spatio-temporal process models generally assume that the value of the

process at a given location at the present time is made up of a weighted combination (or is a

“smoothed version”) of the process throughout the spatial domain at previous times, plus an

additive, Gaussian, spatially coherent “innovation” (see the schematic in Figure 5.1). This

is perhaps best represented in a continuous-spatial context through an integro-difference

equation (IDE). Specifically, a first-order spatio-temporal IDE process model is given by

Yt(s) =

∫

Ds

m(s,x;θp)Yt−1(x) dx+ ηt(s), s,x ∈ Ds, (5.9)

for t = 1, 2, . . . , where m(s,x;θp) is a transition kernel, depending on parameters θp that

specify “redistribution weights” for the process at the previous time over the spatial domain,

Ds, and ηt(·) is a time-varying (but statistically independent in time) continuous mean-zero
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Figure 5.1: Cartoon illustration of a linear DSTM. The process at spatial location s and

time t, Yt(s), is constructed from a linear combination of the process values at the previous

time, Yt−1(·), plus an “instantaneous” random spatial error process, ηt(·). The thick arrows

indicate the passage from past to present to future.

Gaussian spatial process independent of Yt−1(·). Generally, one of the parameters of θp is

just a multiplicative scalar that controls the temporal stability; see (5.23) in Lab 5.2. Note

that we assume here, as one often does, that the parameter vector θp does not vary with time,

but it could do so in general. So, from (5.9), the process at location s and time t is given

by the weighted average (integral) of the process throughout the domain at the past time,

where the weights are given by the transition kernel, m(·, ·). The innovation given by ηt(·),
which is independent of Yt−1(·), has spatial dependence, is typically Gaussian, and accounts

for spatial dependencies in Yt(·) that are not captured by this weighted average. Another

way to think about ηt(·) is that it adds back smaller-scale dependence that is removed in

the inherent smoothing that occurs when {Yt−1(·)} is averaged over space. In general,∫
Ds
m(s,x;θp) dx < 1 is needed for the process to be stable (non-explosive) in time. Note

that the model in (5.9) implicitly assumes that the process Yt(·) has mean zero. In some

cases it may be appropriate to model a non-zero mean directly in the process, as is shown

generally in (5.16) below and specifically for the IDE in Lab 5.2.

In the case where one has a finite set of prediction spatial locations (or regions)

Ds = {s1, s2, . . . , sn} of interest (e.g., an irregular lattice or a regular grid), the first-order

IDE evolution process model (5.9) can be discretized and written as a stochastic difference

equation,

Yt(si) =

n∑

j=1

mij(θp) Yt−1(sj) + ηt(si), (5.10)
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for t = 1, 2, . . . ,with transition (redistribution) weightsmij(θp) that depend on parameters

θp. In this case, the process at Yt(si) considers a weighted combination of the values of the

process at time t− 1 and at a discrete set of spatial locations.

Now, denoting the process vector Yt ≡ (Yt(s1), . . . , Yt(sn))
′, (5.10) can be written in

vector–matrix form as a linear first-order vector autoregression DSTM,

Yt = MYt−1 + ηt, (5.11)

where the n×n transition matrix is given by M with elements {mij}, and the additive spa-

tial error process ηt ≡ (ηt(s1), . . . , ηt(sn))
′ is independent of Yt−1 and is specified to be

mean-zero and Gaussian with spatial covariance matrix Cη. The stability (non-explosive)

condition in this case requires that the maximum modulus of the eigenvalues of M (which

may be complex-valued) be less than 1 (see Technical Note 5.1).

We have assumed in our discussion of the process model that the {Yt(si)} have mean

zero. Although it is possible to include an offset term in the Markovian process model at this

stage, in this section we consider such an offset only in the data model as described above

for (5.6). However, as we discuss below in Section 5.3, it is reasonable to consider the

offset as part of this “process” decomposition, typically including covariate effects and/or

seasonality.

Usually, M and Cη are assumed to depend on parameters θp and θη, respectively,

to mitigate the curse of dimensionality (here, the exponential increase in the number of

parameters) that often occurs in spatio-temporal modeling. As discussed below in Section

5.3, the parameterization of these matrices (particularly M) is one of the greatest challenges

in DSTMs, and it is facilitated by using parameter models in a BHM. However, in relatively

simple applications of fairly low dimensionality and large sample sizes (e.g., when n is

small and T ≫ n), one can estimate n × n matrices M and Cη directly in an EHM, as is

commonly done in state-space models of time series (see Appendix C.2).

Technical Note 5.1: Eigenvalues of the Transition Matrix

Consider the first-order vector autoregressive model,

Yt = MYt−1 + ηt,

where Yt is an n-dimensional vector, and M is an n × n real-valued transition matrix.

The characteristic equation obtained from the determinant,

det(M− λI) = 0,

has n eigenvalues (latent roots), {λi : i = 1, . . . , n}, some of which may be complex

numbers. Each eigenvalue has a modulus and is associated with an eigenvector (taken

together, an eigenvalue–eigenvector pair is sometimes referred to as an eigenmode) that

describes the behavior associated with that eigenvalue. As discussed in Cressie and
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Wikle (2011, Section 3.2.1), the eigenvalues and eigenvectors can tell us quite a bit about

the dynamical properties of the model. First, assume in general that λi = ai + bi
√
−1

(where bi = 0 if λi is real-valued), and define the complex magnitude (or “modulus”) to

be |λi| =
√
a2i + b2i . We note that if max{|λi| : i = 1, . . . , n} ≥ 1, then the eigenmode,

and hence the model, is unstable, and Yt will grow without bound as t increases. Con-

versely, if the maximum modulus of all the eigenvalues is less than 1, then the model is

stable. Since M is real-valued, complex eigenvalues come in complex conjugate pairs,

and their eigenmodes are associated with oscillatory behavior in the dynamics (either

damped or exponentially growing sinusoids, depending on whether the modulus of the

corresponding eigenvalue is less than 1 or greater than or equal to 1, respectively). In

contrast, real-valued eigenvalues correspond to non-oscillatory dynamics.

Intuition for Linear Dynamics

Parameterizations of realistic dynamics should respect the fact that spatio-temporal interac-

tions are crucial for dynamic propagation. For example, in the linear IDE model (5.9), the

asymmetry and rate of decay of the transition kernelm(s,x;θp), relative to a location (here,

s), control propagation (linear advection) and spread (diffusion), respectively. Figure 5.2

shows Hovmöller plots of four one-dimensional (in space) simulations of a spatio-temporal

IDE process and their respective transition kernels evaluated at s0 = 0.5. Panels (a) and

(b) show the inherent diffusive nature of the process depending on kernel width; that is,

spatially coherent disturbances tend to spread across space (diffuse) at a greater rate when

the kernel is wider (i.e., has a larger aperture), which leads to more averaging from one time

to the next. However, note that there is no “slanting” in the plot through time, indicating

that there is no propagation through time (see Section 2.3.3 for an interpretation of Hov-

möller plots). In contrast, panels (c) and (d) show clear evidence of propagation, to the left

when the kernel is offset to the right, and to the right when the kernel is offset to the left.

The intuition here is that the offset kernel pulls information from one particular direction,

and redistributes it in the opposite direction, leading to propagation. More complex kernels

(e.g., multimodal, or spatially varying) can lead to even more complex behavior. As we

discuss in Section 5.3, these basic properties of the transition (redistribution) kernel can

suggest efficient parameterizations of linear DTSM process models.

As mentioned above, there are conditions on the transition kernel (or matrix in the

discrete-space case) that correspond to unstable (explosive in time) behavior. From a dy-

namic perspective, a stable process implies that small perturbations to the spatial field will

eventually decay to the equilibrium (mean) state. Because many real-world spatio-temporal

processes are nonlinear, it can be the case that if one fits an unconstrained linear DSTM to

data that come from such a nonlinear process, then the fitted model is unstable (explosive,

with exponential “growth”). This is not necessarily a bad thing, as it provides immediate
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Figure 5.2: Transition kernelsm(0.5, x;θp) for different θp and associated Hovmöller plots

of spatio-temporal IDE process simulation (one-dimensional in space) with iid noise forc-

ing. (a) Relatively narrow symmetric kernel. (b) Wider symmetric kernel. (c) Asymmetric

kernel produced by shifting a symmetric kernel to the right. (d) Same as (c), but to the left.

Note that the wider the kernel the greater the diffusion, and a shift implies propagation in

the direction away from the shift.

feedback that the wrong model is being fitted or that the finite-time window for the ob-

servations suggests a transient period of growth (see Technical Note 5.2). In some cases,

it can actually be helpful if the confidence (or credible) intervals of the transition-matrix

parameters include the explosive boundary because the mean of the predictive distribution

may show growth (a nonlinear feature) since it effectively averages over realizations that are

both explosive and non-explosive. Of course, long-lead-time forecasts from such a model

are problematic as exponential-growth models are only useful for very short-term predic-

tions unless there is some nonlinear control mechanism (e.g., density-dependent carrying

capacities in ecological applications).

Technical Note 5.2: Transient Growth

An interesting and less appreciated aspect of linear DSTMs is the fact that they can

be stable yet still accommodate so-called “transient growth.” That is, there are periods

in time when the process does have brief excursions from its stable state. Essentially,

if the transition operator is “non-normal” (i.e., in the discrete-space case, if MM′ 6=
M′M, in which case, the eigenvectors of M are non-orthogonal), but still stable (e.g.,
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the maximum modulus of the eigenvalues of M is less than 1; see Technical Note 5.1),

then the linear dynamic process can exhibit transient growth. This means that even

though each eigenvector of the stable M is decaying asymptotically in time, there can

be local-in-time (transient) periods where there is significant (even orders of magnitude)

growth. This is due to the constructive interference of the non-orthogonal eigenvectors

of the transition operator, M. Since almost all real-world linear processes correspond

to non-normal transition operators, this has important implications concerning how one

might parameterize M, as discussed in Section 5.3 below.

5.3 Process and Parameter Dimension Reduction

The latent linear Gaussian DSTM described in Section 5.2 above has unknown parameters

associated with the data model Cη, the transition operatorm(s,x;θp) or matrix M, and the

initial-condition distribution (e.g., µ0 and C0). With the linear Gaussian data model, one

typically considers a fairly simple parameterization of Cǫ (e.g., Cǫ = σ2ǫ I) or perhaps the

covariance matrix implied by a simple spatial random process that has just a few parameters

(e.g., a Matérn spatial covariance function or a spatial conditional autoregressive process).

One of the greatest challenges when considering DSTMs in hierarchical statistical settings

is the curse of dimensionality associated with the process-model level of the DSTM. For the

fairly common situation where the number of spatial locations (n) is much larger than the

number of time replicates (T ), even the fairly simple linear DSTM process model (5.11)

is problematic, as there are on the order of n2 parameters to estimate. To proceed, one

must reduce the number of free parameters to be inferred in the model and/or reduce the

dimension of the spatio-temporal dynamic process. These two approaches are discussed

briefly below.

5.3.1 Parameter Dimension Reduction

Consider the process-error spatial variance–covariance matrix, Cη. In complex modeling

situations, it is seldom the case that one would estimate this as a full positive-definite matrix

in the DSTM. Rather, given that these are spatial covariance matrices, we would either use

one of the common spatial covariance-function representations or a basis-function random-

effects representation (as in Chapter 4 or in Section 5.3.2 below).

Generally, the transition-matrix parameters in the DSTM process model require the

most care, as there there could be as many as n2 of them and, as discussed above, the

linear dynamics of the process are largely controlled by these parameters. In the case of

the simple linear DSTM model (5.11), one could parameterize the transition matrix M

simply as a random walk (i.e., M = I), a spatially homogeneous autoregressive process

(i.e., M = θpI), or a spatially varying autoregressive process (M = diag(θp)). The first
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two parameterizations are somewhat unrealistic for most real-world dynamic processes and

are not recommended, but the last parameterization is more useful for real-world processes.

As an example of the last parameterization described above, consider the process model

where Cη = σ2ηI, and M = diag(θp). We can decompose the first-order conditional

distributions in this case as

[Yt|Yt−1,θp, σ
2
η] =

n∏

i=1

[Yt(si)|Yt−1(si), θp(i), σ
2
η], t = 1, 2, . . . .

Thus, conditional on the parameters θp = (θp(1), . . . , θp(n))
′, we have spatially independ-

ent univariate AR(1) processes at each spatial location (i.e., only the Y -value at the previ-

ous time at the same spatial location influences the transition). However, if θp is random

and has spatial dependence, then if we integrate it out, the marginal conditional distribu-

tion, [Yt|Yt−1, σ
2
η], can imply that all of the elements of Yt−1 influence the transition to

time t at all spatial locations (i.e., this is a non-separable spatio-temporal process). Recall

from Section 4.3 that this building of dependence through marginalization is a fundamen-

tal principle of deep hierarchical modeling, and it provides a simple and often effective

way to construct complex spatio-temporal models (see also Technical Note 4.3). But, al-

though we can accommodate fairly complex non-separable spatio-temporal dependence in

this marginalization, it is important to note that the conditional model does not account

directly for interactions across space and time. This limits its utility in forecasting applica-

tions, where more realistic conditional dynamic specifications are required. Thus, we often

seek parameterizations that directly include such interactions in the conditional model.

Recall from our discussion of the intuition behind linear dynamics in Section 5.2.3

that the transition kernel is very important. This suggests that we can model realistic linear

behavior by parameterizing the kernel shape (particularly its decay in the spatial domain and

its asymmetry) in terms of a relatively small number of parameters (e.g., in the transition

kernel case, the kernel width, or variance, and shift, or mean, parameters). More import-

antly, if we allow these relatively few parameters to vary with space in a principled fashion,

then we can accommodate a variety of quite complex dynamic behaviors. The strength of

the HM approach is that one can fairly easily do this by endowing these kernel parameters

with spatial structure at the parameter-model level of the hierarchy (e.g., allowing them to

be a function of covariates and/or specifying them as spatial random processes).

As an example, consider the IDE process model given in (5.9), where we specify a

Gaussian-shape transition kernel as a function of x relative to the location s (for simplicity,

in a one-dimensional spatial domain):

m(s, x;θp) = θp,1 exp

(
− 1

θp,2
(x− θp,3 − s)2

)
, (5.12)

where the kernel amplitude is given by θp,1, the length-scale (variance) parameter θp,2 cor-

responds to a kernel scale (aperture) parameter (i.e., the kernel width increases as θp,2 in-

creases), and the mean (shift) parameter θp,3 corresponds to a shift of the kernel relative to
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Figure 5.3: An example of a spatially varying kernel in an IDE spatio-temporal model. The

left panel shows the direction (arrow orientation and color) and magnitude (arrow length)

of flow induced by the kernel as a function of x = (x1, x2)
′ in two-dimensional space. The

red cross indicates a specific location in space (so1, s
o
2) around which the kernel is evaluated

and plotted in the right panel. Note that the kernel, which is shifted to the right, induces a

flow to the left.

location s. Notice that (5.12) is positive but need not integrate to 1 over x. Recall from

Figure 5.2 the dynamical implication of changing the shift parameter. Specifically, if θp,3 is

positive (negative) it leads to leftward (rightward) movement because it induces asymmetry

relative to location s. In addition, Figure 5.2 shows the dynamic implications when chang-

ing the kernel width/scale (e.g., wider kernels suggest faster decay). So, to obtain more

complex dynamical behavior, we can allow these parameters to change with space. For

example, suppose the mean (shift) parameter satisfies θp,3(s) = x(s)′β+ω(s), where x(s)
corresponds to covariates at spatial location s, β are the associated regression parameters,

and ω(s) could correspond to a spatial Gaussian process (although, in some cases, it may

be sufficient to omit the error term ω(s); see Lab 5.2 for an example). We can also allow the

parameter θp,2 to vary with space, but it is typically the case that θp,3 is the more important

of the two parameters. Figure 5.3 shows an example of a spatially varying kernel in two

dimensions, and the kernel evaluated at one specific spatial location. Lab 5.1 implements

the simple one-dimensional IDE process model and explores its simulation. Lab 5.2 shows

how one can do spatio-temporal modeling and inference in R using the package IDE.

Although the IDE kernel representation suggests efficient parameterizations for linear

dynamics in continuous space, there are many occasions where we seek efficient parameter-

izations in a discrete-space setting or in the context of random effects in basis-function

expansions. In the case of the former, one of the most useful such parameterizations corre-
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sponds to transition operators that only consider local spatial neighborhoods. We describe

these below and provide a mechanistically motivated example. We defer the discussion of

dynamics for random effects in basis-function expansions to Section 5.3.2.

Lagged-Nearest-Neighbor Representations

The importance of the rate of decay and asymmetry in IDE transition-kernel representa-

tions suggests that for discrete space a very parsimonious, yet realistic, dynamic model

can be specified in terms of a simple lagged-nearest-neighbor (LNN) parameterization, for

example,

Yt(si) =
∑

sj∈Ni

mijYt−1(sj) + ηt(si), (5.13)

where Ni corresponds to a pre-specified neighborhood of the location si (including si), for

i = 1, . . . , n, and where we specify mij = 0, for all sj 6∈ Ni. Such a parameterization

reduces the number of free parameters from the order of n2 to the order of n. It is often

reasonable to further parameterize the transition coefficients in (5.13) to account for decay

(spread or diffusion) rate and asymmetry (propagation direction). In some cases, homo-

geneities of the transitions would result in a single parameter to control a particular type of

neighbor (e.g., a parameter for the west neighbor and east neighbor transition coefficients),

or, in other cases, it would be more appropriate to let these parameters vary in space as well

(as with the IDE transition-kernel example above).

Motivation of an LNN with a Mechanistic Model

The LNN parameterization can be motivated by many mechanistic models, such as those

suggested by standard discretization of integro-differential or partial differential equations

(PDEs). In the latter case, the parameters mij in (5.13) can be parameterized in terms of

other mechanistically motivated knowledge, such as spatially varying diffusion or advection

coefficients. Again, in this framework the {mij} are either estimated directly in an EHM

or modeled at the next level of a BHM (typically, with some sort of spatial structure). As

an example, consider the basic linear, non-random, advection–diffusion PDE,

∂Y

∂t
= a

∂2Y

∂x2
+ b

∂2Y

∂y2
+ u

∂Y

∂x
+ v

∂Y

∂y
, (5.14)

conditional on a, b, u, and v, where a and b are diffusion coefficients that control the

rate of spread, and u and v are advection parameters that account for the process “flow”

(i.e., advection). Simple finite-difference discretization of such PDEs on a two-dimensional

equally spaced finite grid (see Appendix D.1) can lead to LNN specifications of the form

Yt = M(θp)Yt−1 +Mb(θp)Yb,t + ηt,
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where Yt corresponds to a vectorization of the non-boundary grid points, with M(θp) a

five-diagonal transition matrix with diagonals corresponding to functions of a, b, u, v and

the discretization parameters (e.g., these five diagonals correspond to {θp,1, . . . , θp,5} in

Appendix D.1). Such discretizations should account for boundary affects, and so we spec-

ify Yb,t to be a boundary process (either fixed or assumed to be random) with Mb(θp)
the associated transition operator based on the finite-difference discretization of the differ-

ential operator. The additive error process {ηt} is assumed to be Gaussian, mean-zero,

and independent in time. In the more realistic case where the parameters a, b and/or u, v
vary with space, the vector θp varies with space as well, and we model it either in terms

of covariates or as a spatial random process. The point is that we allow these mechanistic

models to suggest or motivate LNN parameterizations rather than our specifying the struc-

ture directly. Appendix D presents detailed examples of DSTMs motivated by mechanistic

models, and the case study in Appendix E presents an implementation of such a model for

the Mediterranean winds data set described in Chapter 2.

5.3.2 Dimension Reduction in the Process Model

As discussed in Section 4.4, it is often the case that to reduce process dimensionality we

could consider the spatio-temporal process of interest as a decomposition in terms of “fixed”

effects and random effects in a basis-function expansion. This is particularly helpful for

DSTM process models, as it is often the case that the important dynamics exist on a fairly

low-dimensional space (i.e., manifold). Consider an extension to the spatial basis-function

mixed-effects model (4.29) from Section 4.4.2,

Yt(s) = xt(s)
′β +

nα∑

i=1

φi(s)αi,t +

nξ∑

j=1

ψj(s)ξj,t + νt(s), (5.15)

where the term with covariates, xt(s)
′β, might be interpreted as a “fixed” or “deterministic”

component with fixed effects β; the first basis-expansion term,
∑nα

i=1 φi(s)αi,t, contains

known spatial basis functions {φi(·)} and associated dynamically evolving random coeffi-

cients (i.e., random effects), {αi,t}; the residual basis-expansion term,
∑nξ

j=1 ψj(s)ξj,t, can

account for non-dynamic spatio-temporal structure, where the basis functions, {ψj(·)}, are

again assumed known, and the random effects {ξj,t} are typically non-dynamic or at least

contain simple temporal behavior. The micro-scale term, νt(·), is assumed to be a Gaussian

process with mean zero and independent in time. The focus here is on the dynamically

evolving random effects, {αi,t}.

As mentioned above, useful reductions in process dimension can be formulated with

the understanding that the essential dynamics for spatio-temporal processes typically exist

in a fairly low-dimensional space. This is helpful because, instead of having to model

the evolution of, say, the n-dimensional vector Yt, one can model the evolution of a much

lower-dimensional (of dimension nα) process {αt}, where nα ≪ n. It is helpful to consider
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the vector form of (5.15):

Yt = Xtβ +Φαt +Ψξt + νt, (5.16)

where Xt is an n × (p + 1) matrix that could be time-varying and can be interpreted as a

spatial offset corresponding to large-scale non-dynamical features and/or covariate effects,

Φ is an n × nα matrix of basis vectors corresponding to the latent dynamic coefficient

process, {αt}, and Ψ is an n× nξ matrix of basis vectors corresponding to the latent coef-

ficient process, {ξt}. Typically, {ξt} is assumed to have different dynamic characteristics

than {αt}, or this component might account for non-dynamic spatial variability. The error

process {νt} is Gaussian and assumed to have mean zero with relatively simple temporal

dependence structure (usually independence).

The evolution of the latent process {αt} can proceed according to the linear equations

involving a transition matrix, discussed earlier. For example, one could specify a first-order

vector autoregressive model (VAR(1)),

αt = Mααt−1 + ηt, (5.17)

where Mα is the nα × nα transition matrix, and ηt ∼ Gau(0,Cη) (which are assumed

to be independent of αt−1 and independent in time). The matrices Mα and Cη in (5.17)

are often relatively simple in structure, depending on the nature of the real-world process

and the type of basis functions considered. However, even in this low-dimensional context

(nα ≪ n), in many cases parameter-space reduction may still be necessary. One could

consider the simple structures that were discussed in the context of linear DSTM process

models (e.g., random walks, independent AR models, nearest-neighbor models). Typically,

it is important, for the reasons discussed in Section 5.2.3 and Technical Note 5.2, that the

transition operator be non-normal (i.e., M′
αMα 6= MαM

′
α), so one should consider non-

diagonal transition matrices in most cases. Also, the notion of “neighbors” is not always

well defined in these formulations. If the basis functions given in Φ are such that the ele-

ments ofαt are not spatially indexed (e.g., in the case of global basis functions such as some

types of splines, Fourier, EOFs, etc.), then a neighbor cannot be based on physical space

(but perhaps it can be based on other characteristics, such as spatial scale). It is important to

note that mechanistic knowledge can also be used in this case to motivate parameterizations

for Mα. We illustrate a couple of such cases, one for a “spectral” representation of a PDE in

Appendix D.2, and one for an IDE process in Appendix D.3. Lab 5.3 provides an example

in which Mα and Cη are estimated by the method of moments and by an EM algorithm

(see Appendix C for more details about these algorithms).

R tip: If one is able to write down the data model as Zt = HtYt + εt, εt ∼
Gau(0,Cǫ,t), and the process model as Yt = MYt−1 + ηt, ηt ∼ Gau(0,Cη),
where the {Ht} are known, then the problem of predicting {αt} and the estimation
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of all the other parameters is the well-known dual state-parameter estimation problem

for state-space models (see Appendix C). Several R packages are available for this, such

as KFAS, MARSS, and Stem. Software for DSTMs is, however, less developed than

that for descriptive models, and estimation/prediction with complex linear DSTMs and

nonlinear DSTMs is likely to require customized R code.

Basis Functions

In the mechanistically motivated PDE and IDE cases presented in Appendices D.2 and D.3,

the natural choice for basis functions are the Fourier modes (i.e., sines and cosines). This

is typically not the case for DSTM process models. Indeed, there are many choices for

the basis functions that could be used to define Φ and Ψ in (5.16) (see, for example, Fig-

ure 4.7). In the context of DSTMs, it is usually important to specify basis functions such

that interactions across spatial scales are allowed to accommodate transient growth. This

can be more difficult to do in “knot-based” representations (e.g., splines, kernel convolu-

tions, predictive processes), where the coefficients αt of Φ are spatially referenced but not

necessarily multi-resolutional. Most other basis-function representations are in some sense

multi-scale, and the associated expansion coefficients {αt} are not indexed in space. In

this case, the dynamical evolution in the DSTM can easily accommodate scale interactions.

The example in Lab 5.3 uses EOFs as the basis functions in such a decomposition of SSTs.

Recall that the coefficients {ξt} associated with the matrix Ψ are typically specified to have

much simpler dynamic structure (if at all), since the controlling dynamics are assumed to

be associated principally with {αt}. Thus, one has more freedom in the choice of basis

functions that define Ψ.

5.4 Nonlinear DSTMs

The linear Gaussian DSTMs described in Sections 5.2 and 5.3 are widely used, but the state

of the art for more complicated models is rapidly advancing. The purpose of this section is

not to give a complete overview of these more advanced models but just a brief perspective

on nonlinear DSTMs without the implementation details.

Many mechanistic processes are best modeled nonlinearly, at least at some spatial and

temporal scales of variability. We might write this as a nonlinear spatio-temporal AR(1)

process (of course, higher-order lags could be considered as well):

Yt(·) = M(Yt−1(·), ηt(·);θp), t = 1, 2, . . . , (5.18)

where M is a nonlinear function that models the process transition from time t − 1 to

t, ηt(·) is an error process, and θp are parameters. Unfortunately, although there is one
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basic linear model, there are an infinite number of nonlinear statistical models that could

be considered. One could either take a nonparametric view of the problem and essentially

learn the dynamics from the data, or one could propose specific model classes that can

accommodate the type of behavior desired. In this section we briefly describe examples of

these approaches to accommodate nonlinear spatio-temporal dynamics.

State-Dependent Models

The general nonlinear model (5.18) can be simplified by considering a state-dependent

model (the terminology comes from the time-series literature, where these models were

first developed), in which the transition matrix depends on the process (state) value at each

time. For example, in the discrete spatial case, we can write

Yt = M(Yt−1;θp) Yt−1 + ηt, (5.19)

where the transition operator depends on Yt−1 and parameters θp (which, more generally,

may also vary with time and/or space). Models such as (5.19) are still too general for spatio-

temporal applications and must be further specified. One type of state-dependent model is

the threshold vector autoregressive model, given by

Yt =





M1Yt−1 + η1,t , if f(ωt) ∈ d1,
...

...

MKYt−1 + ηK,t , if f(ωt) ∈ dK ,

(5.20)

where f(ωt) is a function of a time-varying parameter ωt that can itself be a function of

the process, Yt−1, in which case it is a state-dependent model. We implicitly assume that

conditions on the right-hand side of (5.20) are mutually exclusive; that is, d1, . . . , dK are

disjoint. A simpler threshold model results if the parameters {ωt} do not depend on the

process. Of course, the transition matrices {M1, . . . ,MK} and error covariance matrices

{Cη1 , . . . ,CηK} depend on unknown parameters, and the big challenge in DSTM modeling

is to reduce the dimensionality of this parameter space to facilitate estimation. Some of the

approaches discussed above for the linear DSTM process model can also be applied in this

setting.

R tip: Threshold vector autoregressive time-series models can be implemented with the

TVAR command in the package tsDyn.

General Quadratic Nonlinearity

A very large number of real-world processes in the physical and biological sciences ex-

hibit quadratic interactions. For example, consider the following one-dimensional reaction–
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diffusion PDE:
∂Y

∂t
=

∂

∂x

(
δ
∂Y

∂x

)
+ Y exp

(
γ0

(
1− Y

γ1

))
, (5.21)

where the first term corresponds to a diffusion (spread) term that depends on a parameter δ,

and the second term corresponds to a density-dependent (Ricker) growth term with growth

parameter γ0 and carrying capacity parameter γ1. More generally, each of these parameters

could vary with space and/or time. Notice that the diffusion term is linear in Y but the

density-dependent growth term is nonlinear in that it is a function of Y multiplied by a non-

linear transformation of Y . This can be considered a general case of a quadratic interaction.

A fairly general class of nonlinear statistical DSTM process models can be specified to

accommodate such behavior. In discrete space and time, such a general quadratic nonlinear

(GQN) DSTM can be written, for i = 1, . . . , n, as

Yt(si) =
n∑

j=1

mijYt−1(sj) +
n∑

k=1

n∑

ℓ=1

bi,kℓ g(Yt−1(sℓ);θg) Yt−1(sk) + ηt(si), (5.22)

where mij are the linear-transition coefficients seen previously, and the quadratic-

interaction transition coefficients are denoted by bi,kℓ. Importantly, a transformation of

one of the components of the quadratic interaction is included through the function g(·),
which can depend on parameters θg. This function g(·) is responsible for the term “gen-

eral” in GQN, and such transformations are important for many processes such as density-

dependent growth that one may see in an epidemic or invasive-species population processes

(see, for example, (5.21) above), and they can keep forecasts from “blowing up” in time.

The spatio-temporal error process {ηt(·)} is again typically assumed to be independent in

time and Gaussian with mean zero and a spatial covariance matrix. Note that the condi-

tional GQN model for Yt(·) conditioned on Yt−1(·) is Gaussian, but the marginal model

for Yt(·) will not in general be Gaussian because of the nonlinear interactions. The GQN

model (5.22) can be shown to be a special case of the state-dependent model in (5.19).

There are multiple challenges when implementing models such as (5.22). Chief among

these is the curse of dimensionality. There are O(n3) parameters and, unless one has an

enormous number of time replicates (T ≫ n), inference on them is problematic without

some sort of regularization (shrinkage) and/or the incorporation of prior information. In

addition to parameter estimation, depending on the specification of g(·) (which can act to

control the growth of the process), these models can be explosive when used to forecast

multiple time steps into the future. GQN models have been implemented on an application-

specific basis in BHMs (see Chapter 7 of Cressie and Wikle, 2011, for more discussion).

Some Other Nonlinear Models

There are currently several promising approaches for nonlinear spatio-temporal modeling in

addition to those mentioned above. For example, there are a wide variety of methods being
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developed in machine learning to predict and/or classify high volumes of dependent data,

including spatio-temporal data (e.g., sequences of images). These methods often relate to

variants of neural networks (e.g., convolutional and recurrent neural networks (RNNs)), and

they have revolutionized many application areas such as image classification and natural-

language processing. In their original formulations, these methods do not typically address

uncertainty quantification. However, there is increasing interest in considering such models

within broader uncertainty-based paradigms. As mentioned in Chapter 1, there is a con-

nection between deep hierarchical statistical models (BHMs) and many of these so-called

“deep learning” algorithms.

For example, the GQN model described above is flexible, interpretable, and can accom-

modate many different types of dynamic processes and uncertainty quantification strategies.

Similarly, the typical RNN model is also flexible and can accommodate a wide variety of

spatio-temporal dependence structures. However, both the GQN and RNN models can be

difficult to implement computationally due to the high dimensionality of the hidden states

and parameters, and it typically requires sophisticated regularization (and/or a large amount

of data or prior information) to make them work. A computationally efficient alternative

is the so-called echo state network (ESN) methodology that was developed as an alterna-

tive to RNNs in the engineering literature (for overviews, see Lukoševičius and Jaeger,

2009; Lukoševičius, 2012). Importantly, ESNs consider sparsely connected hidden layers

that allow for sequential interactions yet assume most of the parameters (“weights”) are

randomly generated and then fixed, with the only parameters estimated being those that

connect the hidden layer to the response. This induces a substantially more parsimonious

structure in the model. Yet, these models traditionally do not explicitly include quadratic

interactions or formal uncertainty quantification. McDermott and Wikle (2017) consider a

quadratic spatio-temporal ESN model they call a quadratic ESN (QESN) and implement it

in a bootstrap context to account for parameter uncertainty. Details concerning the QESN

are given in Appendix F, and the associated case study provides an example of how to use

an ensemble of QESNs to generate a long-lead forecast of the SST data.

Another type of nonlinear spatio-temporal model that is increasingly being considered

in statistical applications is the agent-based model (or, in some literatures, the individual-

based model). In this case, the process is built from local individual-scale interactions by

means of fairly simple rules that lead to complex nonlinear behavior. Although these mod-

els are parsimonious in that they have relatively few parameters, they can be quite com-

putationally expensive, and parameter inference can be challenging (although approximate

likelihood methods and BHMs have shown recent promise). For examples, see Cressie and

Wikle (2011, Section 7.3.4) and Wikle and Hooten (2016).

There is yet another parsimonious approach to nonlinear spatio-temporal modeling that

is somewhat science-based and relies on so-called “analogs.” Sometimes referred to as a

“mechanism-free” approach, in its most basic form, analog forecasting seeks to find histor-

ical sequences of maps (analogs) that match a similar sequence culminating at the current

time. Then it assumes that the forecast made at the current time will be what actually
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occurred with the best analog matches. (This is somewhat like the so-called “hot-deck im-

putation” in statistics.) Analog forecasting can be shown to be a type of spatio-temporal

nearest-neighbor-regression methodology. There are many modifications to this procedure

related to various conditions as to what “best” means when comparing analogs to the cur-

rent state, distance metrics, how many analogs to use, and so forth. Traditionally, these

methods have not been part of statistical methodology, and so uncertainty quantification

and parameter estimation are not generally considered from a formal probabilistic perspec-

tive. Recent implementations have sought to consider uncertainty quantification and formal

inference, including prediction, within a Bayesian inferential framework (McDermott and

Wikle, 2016; McDermott et al., 2018).

5.5 Chapter 5 Wrap-Up

Recall that one of the big challenges with the descriptive spatio-temporal models described

in Chapter 4 was the specification of realistic covariance structures. We showed that build-

ing such structures through conditioning on random effects could be quite useful. The

present chapter considered spatio-temporal models from a conditional-in-time (dynamic)

perspective that respected the belief that most real-world spatio-temporal processes are best

described as spatial processes that evolve through time. Like the random-effects models of

Chapter 4, this perspective relied very much on conditional-probability models. First, there

was a strong assumption (which is also present in the descriptive models of Chapter 4) that

the data, when conditioned on the true spatio-temporal process of interest, could be consid-

ered independent in time (and, typically, have fairly simple error structure as well). Second,

a Markov assumption in time was made, so that the joint distribution of the process could

be decomposed as the product of low-order Markov (in time) conditional-probability distri-

butions. These conditional distributions corresponded to dynamic models that describe the

transition of the spatial process from the previous time(s) to the current time. This dynamic

model was further conditioned on parameters that control the transition and the innovation-

error structure. We showed that the models can often benefit from these parameters being

random processes (and/or dependent on covariates) as well.

We presented the most commonly used DSTMs with data models that have additive

Gaussian error and process models that have linear transition structure with additive Gaus-

sian error. In the simplest case, where time is discrete and interest is in a finite set of spatial

locations, we showed that these models are essentially multivariate state-space time series

models, and many of the sequential prediction and estimation algorithms from that litera-

ture (e.g., filters, smoothers plus estimation through EM, and Bayesian algorithms) can then

be used. We also discussed that non-Gaussian data models are fairly easily accommodated

if one can obtain conditional independence when conditioning on a latent Gaussian process

model (e.g., a data model obtained from a generalized linear model). Additional details

on such estimation methods can be found in Shumway and Stoffer (1982, 2006), Gamer-
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man and Lopes (2006), Prado and West (2010), Cressie and Wikle (2011), and Douc et al.

(2014).

We emphasized that the biggest challenge with these models is accommodating high

dimensionality (either in data volume, number of prediction locations, or number of para-

meters to be estimated). Thus, one of the fundamental differences between DSTMs and

multivariate time series models is that DSTMs require scalable parameterization of the evo-

lution model. We showed that this modeling can be facilitated greatly by understanding

some of the fundamental properties of linear dynamical systems and using this mechanistic

knowledge to parameterize transition functions/matrices. Additional details on the mech-

anistic motivation for DSTMs can be found in Cressie and Wikle (2011).

We discussed that nonlinear DSTMs are an increasingly important area of spatio-

temporal modeling. It is important that statistical models for such processes include realistic

structural components (e.g., quadratic interactions) and account formally for uncertainty

quantification. We mentioned that a significant challenge with these models in both the

statistics and machine learning literature is to mitigate the curse of dimensionality in the

parameter space (see, for example, Cressie and Wikle, 2011; Goodfellow et al., 2016). This

often requires mechanistic-based parameterizations, informative prior distributions, and/or

regularization approaches. This has led to increased interest in very parsimonious rep-

resentations for nonlinear DSTMs, such as echo state networks, agent-based models, and

analog models.

In general, DSTMs require many assumptions in order to build conditional models at

each level of the hierarchy. They can also be difficult to implement in some cases due to

complex dependence and deep levels, often requiring fully Bayesian implementations. This

also makes it necessary to validate these assumptions carefully through model diagnostics

and evaluation of their predictions. Some approaches to spatio-temporal model evaluation

are discussed in Chapter 6.

Lab 5.1: Implementing an IDE Model in One-Dimensional Space

In this Lab we take a look at how one can implement a stochastic integro-difference equa-

tion (IDE) in one-dimensional space and time, from first principles. Specifically, we shall

consider the dynamic model,

Yt(s) =

∫

Ds

m(s, x;θp)Yt−1(x)dx+ ηt(s), s, x ∈ Ds,

where Yt(·) is the spatio-temporal process at time t; θp are parameters that we fix (in prac-

tice, these will be estimated from data; see Lab 5.2); and ηt(·) is a spatial process, inde-

pendent of Yt(·), with covariance function that we shall assume is known.

We only need the packages dplyr, ggplot2, and STRbook for this lab and, for repro-

ducibility purposes, we fix the seed.
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library("dplyr")

library("ggplot2")

library("STRbook")

set.seed(1)

Constructing the Process Grid and Kernel

We start off by constructing a discretization of the one-dimensional spatial domain Ds =
[0, 1]. We shall use this discretization, containing cells of width ∆s, for both approximate

integrations as well as visualizations. We call this our spatial grid.

ds <- 0.01

s_grid <- seq(0, 1, by = ds)

N <- length(s_grid)

Our space-time grid is formed by calling expand.grid with s_grid and our temporal

domain, which we define as the set of integers spanning 0 up to T = 200.

nT <- 201

t_grid <- 0:(nT-1)

st_grid <- expand.grid(s = s_grid, t = t_grid)

The transition kernel m(s, x;θp) is a bivariate function on our spatial grid. It is defined

below to be a Gaussian kernel, where the entries of θp = (θp,1, θp,2, θp,3)
′ are the amplitude,

the scale (aperture, twice the variance), and the shift (offset) of the kernel, respectively.

Specifically,

m(s, x;θp) ≡ θp,1 exp

(
− 1

θp,2
(x− θp,3 − s)2

)
,

which can be implemented as an R function as follows.

m <- function(s, x, thetap) {

gamma <- thetap[1] # amplitude

l <- thetap[2] # length scale

offset <- thetap[3] # offset

D <- outer(s + offset, x, '-') # displacements

gamma * exp(-D^2/l) # kernel eval.

}

Note the use of the function outer with the subtraction operator. This function performs

an “outer operation” (a generalization of the outer product) by computing an operation

between every two elements of the first two arguments, in this case a subtraction.

We can now visualize some kernels by seeing how the process at s = 0.5 depends on x.

Four such kernels are constructed below: the first is narrow and centered on 0.5; the second
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is slightly wider; the third is shifted to the right; and the fourth is shifted to the left. We

store the parameters of the four different kernels in a list thetap.

thetap <- list()

thetap[[1]] <- c(40, 0.0002, 0)

thetap[[2]] <- c(5.75, 0.01, 0)

thetap[[3]] <- c(8, 0.005, 0.1)

thetap[[4]] <- c(8, 0.005, -0.1)

Plotting proceeds by first evaluating the kernel for all x at s = 0.5, and then plotting these

evaluations against x. The first kernel is plotted below; plotting the other three is left as an

exercise for the reader. The kernels are shown in the top panels of Figure 5.2.

m_x_0.5 <- m(s = 0.5, x = s_grid, # construct kernel

thetap = thetap[[1]]) %>% # at s = 0.5

as.numeric() # convert to numeric

df <- data.frame(x = s_grid, m = m_x_0.5) # allocate to df

ggplot(df) + geom_line(aes(x, m)) + theme_bw() # plot

The last term we need to define is ηt(·). Here, we define it as a spatial process with an

exponential covariance function with range parameter 0.1 and variance 0.1. The covariance

matrix at each time point is then

Sigma_eta <- 0.1 * exp( -abs(outer(s_grid, s_grid, '-') / 0.1))

Simulating ηt(s) over s_grid proceeds by generating a multivariate Gaussian vector

with mean zero and covariance matrix Sigma_eta. To do this, one can use the function

mvrnorm from the package MASS. Alternatively, one may use the lower Cholesky fac-

tor of Sigma_eta and multiply this by a vector of numbers generated from a mean-zero,

variance-one, independent-elements Gaussian random vector (see Rue and Held, 2005, Al-

gorithm 2.3).

L <- t(chol(Sigma_eta)) # chol() returns upper Cholesky factor

sim <- L %*% rnorm(nrow(Sigma_eta)) # simulate

Type plot(s_grid, sim, 'l') to plot this realization of ηt(s) over s_grid.

Simulating from the IDE

Now we have everything in place to simulate from the IDE. Simulation is most easily carried

out using a for loop as shown below. We shall carry out four simulations, one for each

kernel constructed above, and store the simulations in a list of four data frames, one for

each simulation. The following command initializes this list.
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Y <- list()

For each simulation setting (which we iterate using the index i), we simulate the time

points (which we iterate using j) to obtain the process. The “nested for loop” below

accomplishes this. In the outer loop, the kernel is constructed and the process is initialized

to zero. In the inner loop, the integration is approximated using a Riemann sum,

∫

Ds

m(s, x;θp)Yt−1(x)dx ≈
∑

i

m(s, xi;θp)Yt−1(xi)∆s,

where we recall that we have set ∆s = 0.01. Next, at every time point ηt(s) is simulated

on the grid and added to the sum (an approximation of the integral) above.

for(i in 1:4) { # for each kernel

M <- m(s_grid, s_grid, thetap[[i]]) # construct kernel

Y[[i]] <- data.frame(s = s_grid, # init. data frame with s

t = 0, # init. time point 0, and

Y = 0) # init. proc. value = 0

for(j in t_grid[-1]) { # for each time point

prev_Y <- filter(Y[[i]], # get Y at t - 1

t == j - 1)$Y

eta <- L %*% rnorm(N) # simulate eta

new_Y <- (M %*% prev_Y * ds + eta) %>%

as.numeric() # Euler approximation

Y[[i]] <- rbind(Y[[i]], # update data frame

data.frame(s = s_grid,

t = j,

Y = new_Y))

}

}

Repeatedly appending data frames, as is done above, is computationally inefficient. For

large systems it would be quicker to save a data frame for each time point in another list

and then concatenate using rbindlist from the package data.table.

Since now Y[[i]], for i= 1, . . . , 4, contains a data frame in long format, it is straight-

forward to visualize. The code given below constructs the Hovmöller plot for the IDE pro-

cess for i= 1. Plotting for i= 2, 3, 4 is left as an exercise for the reader. The resulting

plots are shown in the bottom panels of Figure 5.2.

ggplot(Y[[1]]) + geom_tile(aes(s, t, fill = Y)) +

scale_y_reverse() + theme_bw() +

fill_scale(name = "Y")
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Simulating Observations

Now assume that we want to simulate noisy observations from one of the process models

that we have just simulated from. Why would we want to do this? Frequently, the only way

to test whether algorithms for inference are working as they should is to mimic both the

underlying true process and the measurement process. Working with simulated data is the

first step in developing reliable algorithms that are then ready to be applied to real data.

To map the observations to the data we need an incidence matrix that picks out the

process value that has been observed. This incidence matrix is simply composed of several

rows, one for each observation, with zeros everywhere except for the entry corresponding

to the process value that has been observed (recall Section 5.2.1). When the locations we

are observing change over time, the incidence matrix correspondingly changes over time.

Suppose that at each time point we observe the process at 50 locations which, for con-

venience, are a subset of s_grid. (If this is not the case, some nearest-neighbor mapping

or deterministic interpolation method can be used.)

nobs <- 50

sobs <- sample(s_grid, nobs)

Then the incidence matrix at time t, Ht, can be constructed by matching the observation

locations on the space-time grid using the function which.

Ht <- matrix(0, nobs, N) # construct empty matrix

for(i in 1:nobs) { # for each obs

idx <- which(sobs[i] == s_grid) # find the element to set to 1

Ht[i, idx] <- 1 # set to 1

}

Note that Ht is sparse (contains many zeros), so sparse-matrix representations can be used

to improve computational and memory efficiency; look up the packages Matrix or spam

for more information on these representations.

We can repeat this procedure for every time point to simulate our data. At time t, the

data are given by Zt = HtYt + εt, where Yt is the latent process on the grid at time t,
and εt is independent of Yt and represents a Gaussian random vector whose entries are iid
with mean zero and variance σ2ǫ . Assume σ2ǫ = 1 and that Ht is the same for each t. Then

observations are simulated using the following for loop.

z_df <- data.frame() # init data frame

for(j in 0:(nT-1)) { # for each time point

Yt <- filter(Y[[1]], t == j)$Y # get the simulated process

zt <- Ht %*% Yt + rnorm(nobs) # map to obs and add noise

z_df <- rbind(z_df, # update data frame

data.frame(s = sobs, t = j, z = zt))

}
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Plotting of the simulated observations proceeds using ggplot2 as follows.

ggplot(z_df) + geom_point(aes(s, t, colour = z)) +

col_scale(name = "z") + scale_y_reverse() + theme_bw()

Note that the observations are noisy and reveal sizeable gaps. Filling in these gaps by first

estimating all the parameters in the IDE from the data and then predicting at unobserved

locations is the subject of Lab 5.2.

Lab 5.2: Spatio-Temporal Inference using the IDE Model

In this Lab we use the package IDE to fit spatio-temporal IDE models as well as predict and

forecast from spatio-temporal data. We explore three cases. The first two cases consider

simulated data where the true model is known, and the third considers the Sydney radar

data set described in Chapter 2.

For this Lab, we need the package IDE and also the package FRK, which will be

used to construct basis functions to model the spatially varying parameters of the kernel.

In addition, we shall use the package plyr for binding data frames with unequal column

number later on in the Lab.

library("plyr")

library("dplyr")

library("IDE")

library("FRK")

library("ggplot2")

library("sp")

library("spacetime")

library("STRbook")

The kernel m(s,x;θp) used by the package IDE is given by

m(s,x;θp) = θp,1(s) exp

(
− 1

θp,2(s)

[
(x1 − θp,3(s)− s1)

2 + (x2 − θp,4(s)− s2)
2
])

,

(5.23)

where θp,1(s) is the spatially varying amplitude, θp,2(s) is the spatially varying kernel aper-

ture (or width), and the mean (shift) parameters θp,3(s) and θp,4(s) correspond to a spatially

varying shift of the kernel relative to location s. Spatially invariant kernels (i.e., where the

elements of θp are not functions of space) are also allowed.

The package IDE uses a bisquare spatial-basis-function decomposition for both the

process Yt(·) and the spatial process ηt(·), t = 1, 2, . . . . The covariance matrix of the basis-

function coefficients associated with ηt(·) is assumed to be proportional to the identity

matrix, where the constant of proportionality is estimated. In IDE, the latent process Ỹt(s)
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is the IDE dynamical process superimposed on some fixed effects, which can be expressed

as a linear combination of known covariates xt(s),

Ỹt(s) = xt(s)
′β + Yt(s); s ∈ Ds, (5.24)

for t = 1, 2, . . . , where β are regression coefficients. The data vector Zt ≡
(Zt(r1t), . . . , Zt(rmtt))

′ is then the latent process observed with noise,

Zt(rjt) = Ỹt(rjt) + ǫt(rjt), j = 1, . . . ,mt,

for t = 1, 2, . . . , where ǫt(rjt) ∼ iidGau(0, σ2ǫ ).

Simulation Example with a Spatially Invariant Kernel

The package IDE contains a function simIDE that simulates the behavior of a typical dy-

namic system governed by linear transport. The function can simulate from a user-defined

IDE model, or from a pre-defined one. In the latter case, the number of time points to

simulate (T), the number of (spatially fixed) observations to use (nobs), and a flag in-

dicating whether to use a spatially invariant kernel (k_spat_invariant = 1) or not

(k_spat_invariant = 0), need to be provided. The pre-defined model includes a

linear trend in s1 and s2.

SIM1 <- simIDE(T = 10, nobs = 100, k_spat_invariant = 1)

The returned list SIM1 contains the simulated process in the data frame s_df, the observed

data in the data frame z_df, and the observed data as an STIDF object z_STIDF. It also

contains two ggplot2 plots, g_truth and g_obs, which can be readily plotted as follows.

print(SIM1$g_truth)

print(SIM1$g_obs)

While the action of the transport is clearly noticeable in the evolution of the process, there

is also a clear spatial trend. Covariates are included through the use of a standard R for-

mula when calling the function IDE. Additional arguments to IDE include the data set,

which needs to be of class STIDF, the temporal discretization to use (we will use 1 day)

of class difftime, and the resolution of the grid upon which the integrations (as well as

predictions) will be carried out. Other arguments include user-specified basis functions for

the process and what transition kernel will be used, which for now we do not specify. By

default, the IDE model will decompose the process using two resolutions of bisquare basis

functions and will assume a spatially invariant Gaussian transition kernel.
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IDEmodel <- IDE(f = z ~ s1 + s2,

data = SIM1$z_STIDF,

dt = as.difftime(1, units = "days"),

grid_size = 41)

The returned object IDEmodel is of class IDE and contains initial parameter estim-

ates, as well as predictions of αt, for t = 1, . . . , T , at these initial parameter estimates.

The parameters in this case are the measurement-error variance, the variance of the ran-

dom disturbance ηt(·) (whose covariance structure is fixed), the kernel parameters, and the

regression coefficients β.

Estimating the parameters in the IDE model using maximum likelihood is a computa-

tionally intensive procedure. The default method currently implemented uses a differential

evolution optimization algorithm from the package DEoptim, which is a global optimiza-

tion algorithm that can be easily parallelized. Fitting takes only a few minutes on a 60-core

high-performance computer, but can take an hour or two on a standard desktop computer.

Fitting can be done by running the following code.

fit_results_sim1 <- fit.IDE(IDEmodel,

parallelType = 1)

Here parallelType = 1 ensures that all available cores on the computer are used for

fitting. Alternatively, the results can be loaded from cache using the following command.

data("IDE_Sim1_results", package = "STRbook")

The list fit_results_sim1 contains two fields: optim_results that contains

the output of the optimization algorithm, and IDEmodel that contains the fitted IDE model.

The fitted kernel can be visualized by using the function show_kernel.

show_kernel(fit_results_sim1$IDEmodel)

Note how the fitted kernel is shifted to the left and upwards, correctly representing the

southeasterly transport evident in the data. The estimated kernel parameters θp are given

below.

fit_results_sim1$IDEmodel$get("k") %>% unlist()

## par1 par2 par3 par4

## 152.83635 0.00198 -0.10160 0.10037

These estimates compare well to the true values c(150, 0.002, -0.1, 0.1) (see the

help file for simIDE). The estimated regression coefficients are given below.
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coef(fit_results_sim1$IDEmodel)

## Intercept s1 s2

## 0.207 0.197 0.191

These also compare well to the true values c(0.2, 0.2, 0.2)̧. Also of interest are the

moduli of the possibly complex eigenvalues of the evolution matrix M. These can be

extracted as follows.

abs_ev <- eigen(fit_results_sim1$IDEmodel$get("M"))$values %>%

abs()

summary(abs_ev)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.003 0.290 0.366 0.331 0.399 0.464

Since the largest of these is less than 1, the IDE exhibits stable behavior.

For prediction, one may either specify a prediction grid or use the default one used for

approximating the integrations set up by IDE. The latter is usually sufficient, so we use this

without exception for the examples we consider. When a prediction grid is not supplied,

the function predict returns a data frame with predictions spanning the temporal extent

of the data (forecasts and hindcasts are explored later).

ST_grid_df <- predict(fit_results_sim1$IDEmodel)

The prediction map and prediction-standard-error map can now be plotted using stand-

ard ggplot2 commands as follows.

gpred <- ggplot(ST_grid_df) + # Plot the predictions

geom_tile(aes(s1, s2, fill=Ypred)) +

facet_wrap(~t) +

fill_scale(name = "Ypred", limits = c(-0.1, 1.4)) +

coord_fixed(xlim=c(0, 1), ylim = c(0, 1))

gpredse <- ggplot(ST_grid_df) + # Plot the prediction s.es

geom_tile(aes(s1, s2, fill = Ypredse)) +

facet_wrap(~t) +

fill_scale(name = "Ypredse") +

coord_fixed(xlim=c(0, 1), ylim = c(0, 1))

In Figure 5.4, we show the observations, the true process, the predictions, and the prediction

standard errors from the fitted model. Notice that the prediction standard errors are large in

regions of sparse observations, as expected.
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Figure 5.4: Simulated process (top left), simulated data (top right), predictions following the

fitting of the IDE model (bottom left) and the respective prediction standard errors (bottom

right).

Simulation Example with a Spatially Varying Kernel

In the previous example we considered the case of a spatially invariant kernel, that is, the

case when the kernel m(s,x;θp) is just a function of x − s. In this example, we consider

the case when one or more of the θp are allowed to be spatially referenced. Such models

are needed when the spatio-temporal process exhibits, for example, considerable spatially

varying drift (i.e., advection). Such a process can be simulated using the function simIDE

by specifying k_spat_invariant = 0. To model data from a process of this sort, we

need to have a large nobs and many time points; we set T = 15. This is important, as it

is difficult to obtain reasonable estimates of spatially distributed parameters unless the data
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cover a large part of the spatial domain for a sustained amount of time.

SIM2 <- simIDE(T = 15, nobs = 1000, k_spat_invariant = 0)

As above, the process and the observed data can be plotted as two ggplot2 plots.

print(SIM2$g_truth)

print(SIM2$g_obs)

Note how the process appears to rotate quickly counter-clockwise and come to a nearly

complete standstill towards the lower part of the domain. The spatially varying advection

that generated this field can be visualized using the following command.

show_kernel(SIM2$IDEmodel, scale = 0.2)

In this command, the argument scale is used to scale the arrow sizes by 0.2; that is, the

shift per time point is five times the displacement indicated by the arrow.

Spatially varying kernels can be introduced by specifying the argument

kernel_basis inside the call to IDE. The basis functions that IDE uses are of

the same class as those used by FRK. We construct nine bisquare basis functions below

that are equally spaced in the domain.

mbasis_1 <- auto_basis(manifold = plane(), # fns on the plane

data = SIM2$z_STIDF, # data

nres = 1, # 1 resolution

type = 'bisquare') # type of functions

To plot these basis functions, type show_basis(mbasis_1).

Now, recall that θp,1 (identified as thetam1 in IDE) corresponds to the amplitude

of the kernel, θp,2 (thetam2) to the scale (width) or aperture, θp,3 (thetam3) to the

horizontal drift, and θp,4 (thetam4) to the vertical drift. In what follows, suppose that θp,1
and θp,2 are spatially invariant (usually a reasonable assumption), and decompose θp,3 and

θp,4 as sums of basis functions given in mbasis_1.

kernel_basis <- list(thetam1 = constant_basis(),

thetam2 = constant_basis(),

thetam3 = mbasis_1,

thetam4 = mbasis_1)

Modeling proceeds as before, except that now we specify the argument

kernel_basis when calling IDE.
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IDEmodel <- IDE(f = z ~ s1 + s2 + 1,

data = SIM2$z_STIDF,

dt = as.difftime(1, units = "days"),

grid_size = 41,

kernel_basis = kernel_basis)

Fitting also proceeds by calling the function fit.IDE. We use the argument itermax

= 400 below to specify the maximum number of iterations for the optimization routine to

use.

fit_results_sim2 <- fit.IDE(IDEmodel,

parallelType = 1,

itermax = 400)

As above, since this is computationally intensive, we provide cached results that can be

loaded using the following command.

data("IDE_Sim2_results", package = "STRbook")

The fitted spatially varying kernel can be visualized using the following command.

show_kernel(fit_results_sim2$IDEmodel)

The true and fitted spatially varying drift parameters are shown side by side in Figure 5.5.

Note how the fitted drifts capture the broad directions and magnitudes of the true underly-

ing process. Predictions and prediction standard errors can be obtained and mapped using

predict as above. This is left as an exercise for the reader.

The Sydney Radar Data Set

Analysis of the Sydney radar data set proceeds in much the same way as in the simulation

examples. In this case, we choose to have a spatially invariant kernel, since the data are

not suggestive of spatially varying dynamics. We first load the Sydney radar data set as an

STIDF object.

data("radar_STIDF", package = "STRbook")

As was seen in Chapter 2, the Sydney radar data set exhibits clear movement (drift), making

the IDE a good modeling choice for these data. We now call the function IDE as before,

with the added arguments hindcast and forecast, which indicate how many time

intervals into the past, and how many into the future, we wish to predict for periods pre-

ceeding the training period (hindcast) and periods following the training period (forecast),

respectively (see Section 6.1.3 for more information on hindcasts and forecasts). In this

case the data are at 10-minute intervals (one period), and we forecast and hindcast for two

periods each (i.e., 20 minutes).
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Figure 5.5: True drifts (left) and estimated drifts (right).

IDEmodel <- IDE(f = z ~ 1,

data = radar_STIDF,

dt = as.difftime(10, units = "mins"),

grid_size = 41,

forecast = 2,

hindcast = 2)

Fitting proceeds by calling fit.IDE.

fit_results_radar <- fit.IDE(IDEmodel,

parallelType = 1)

Since this command will take a considerable amount of time on a standard machine, we

load the results directly from cache.

data("IDE_Radar_results", package = "STRbook")

The fitted kernel can be visualized as it was above.

show_kernel(fit_results_radar$IDEmodel)

The kernel is again clearly shifted off-center and suggestive of transport in a predominantly

easterly (and slightly northerly) direction. This is corroborated by visual inspection of the

data. The estimated shift parameters are as follows.
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shift_pars <- (fit_results_radar$IDEmodel$get("k") %>%

unlist())[3:4]

print(shift_pars)

## par3 par4

## -5.5 -1.9

The magnitude of the estimated shift vector is hence indicative of a transport of√
(5.5)2 + (1.9)2 = 5.82 km per 10-minute period, or 34.91 km per hour.

The modulus of the possibly complex eigenvalues of the evolution matrix M can be

extracted as follows.

abs_ev <- eigen(fit_results_radar$IDEmodel$get("M"))$values %>%

abs()

summary(abs_ev)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.01 0.58 0.67 0.62 0.72 0.79

The largest absolute eigenvalue is considerably larger than that in the simulation study,

suggesting more field persistence (although, since it is less than 1, the process is still stable).

This persistence is expected, since the data clearly show patches of precipitation that are

sustained and transported, rather than decaying, over time.

When calling the function IDE, we set up the object to be able to forecast 20 minutes

into the future and hindcast 20 minutes into the past. These forecasts and hindcasts will be

in the object returned from predict.

ST_grid_df <- predict(fit_results_radar$IDEmodel)

The data frame ST_grid_df contains the predictions in the field Ypred and the predic-

tion standard errors in the field Ypredse. The field t, in both our data and predictions,

contains the date as well as the time; we now create another field time that contains just

the time of day.

radar_df$time <- format(radar_df$t, "%H:%M")

ST_grid_df$time <- format(ST_grid_df$t, "%H:%M")

The code given below plots the data as well as the smoothed fields containing the hind-

casts, the predictions, and the forecasts. So that we match the data plots with the prediction

plots, timewise, we create empty fields corresponding to hindcast and forecast periods in the

data frame containing the observations. This can be achieved easily using rbind.fill

from the package plyr.
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Figure 5.6: Observed data (left), and hindcasts, predictions, and forecasts using the IDE

model (right).

## Add time records with missing data

radar_df <- rbind.fill(radar_df,

data.frame(time = c("08:05", "08:15",

"10:25", "10:35")))

## Plot of data, with color scale capped to (-20, 60)

gobs <- ggplot(radar_df) +

geom_tile(aes(s1, s2, fill = pmin(pmax(z, -20), 60))) +

fill_scale(limits = c(-20, 60), name = "Z") +

facet_wrap(~time) + coord_fixed() + theme_bw()

## Plot of predictions with color scale forced to (-20, 60)

gpred <- ggplot(ST_grid_df) +

geom_tile(aes(s1, s2, fill = Ypred)) +

facet_wrap(~time) + coord_fixed() + theme_bw() +

fill_scale(limits = c(-20, 60), name = "Ypred")

The plots are shown in Figure 5.6. Notice how both the forecasts and the hindcasts in-

corporate the information on transport that is evident in the data. We did not plot prediction

standard errors in this case, which is left as an exercise for the reader.
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Lab 5.3: Spatio-Temporal Inference with Unknown Evolution

Operator

If we have no prior knowledge to guide us on how to parameterize M, then M can be estim-

ated in full in the context of a standard state-space modeling framework. When taking this

approach, it is important that a very low-dimensional representation of the spatio-temporal

process is adopted – the dimension of the parameter space increases quadratically with the

dimension of the process, and thus the model can easily become over-parameterized.

Empirical orthogonal functions (EOFs) are ideal basis functions to use in this case, since

they capture most of the variability in the observed signal, by design. In this Lab we look

at the SST data set, take the EOFs that we generated in Lab 2.3, and estimate all unknown

parameters, first within a classical time-series framework based on a vector autoregression

and using the method of moments (see Appendix C.1), and then in a state-space framework

using the EM algorithm (see Appendix C.2).

Time-Series Framework

The aim of this first part of the Lab is to show how even simple methods can be used in

a dynamical setting to provide prediction and prediction standard errors on a variable of

interest. These methods work particularly well when we have complete spatial coverage

and a high signal-to-noise ratio; this is the case with the SST data.
First, we load the usual packages.

library("ggplot2")

library("STRbook")

Then we load expm for raising matrices to a specified power and Matrix, which here we

only use for plotting purposes.

library("expm")

library("Matrix")

We now load the SST data, but this time we truncate it at April 1997 in order to forecast the

SSTs 6 months ahead, in October 1997.

data("SSTlandmask", package = "STRbook")

data("SSTlonlat", package = "STRbook")

data("SSTdata", package = "STRbook")

delete_rows <- which(SSTlandmask == 1) # remove land values

SST_Oct97 <- SSTdata[-delete_rows, 334] # save Oct 1997 SSTs

SSTdata <- SSTdata[-delete_rows, 1:328] # until April 1997

SSTlonlat$mask <- SSTlandmask # assign mask to df
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Next, we construct the EOFs using only data up to April 1997. The following code

follows closely what was done in Lab 2.3, where the entire data set was used.

Z <- t(SSTdata) # data matrix

spat_mean <- apply(SSTdata, 1, mean) # spatial mean

nT <- ncol(SSTdata) # no. of time points

Zspat_detrend <- Z - outer(rep(1, nT), # detrend data

spat_mean)

Zt <- 1/sqrt(nT-1)*Zspat_detrend # normalize

E <- svd(Zt) # SVD

The number of EOFs we use here to model the SST data is n = 10. These 10 leading

EOFs capture 74% of the variability in the data.

n <- 10

Recall that the object E contains the SVD, that is, the matrices U and V and the singular

values. The dimension-reduced time series of coefficients are given by the EOFs multiplied

by the spatially detrended data, that is, αt = Φ′(Zt − µ̂), t = 1, . . . , T , where µ̂ =
(1/T )

∑T
t=1 Zt is the estimated spatial mean.

TS <- Zspat_detrend %*% E$v[, 1:n]

summary(colMeans(TS))

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -2.09e-16 -8.00e-17 3.20e-16 3.11e-16 6.92e-16 8.89e-16

In the last line above, we have verified that the time series have mean zero, which is needed

to compute covariances by taking outer products. Next, we estimate the matrices M and

Cη using the method of moments. First we create two sets of time series that are shifted

by τ time points with respect to each other; in this case we let τ = 6, so that we analyze

dynamics on a six-month scale. The ith column in TStplustau below corresponds to the

time series at the (i + 6)th time point, while that in TSt corresponds to the time series at

ith time point.

tau <- 6

nT <- nrow(TS)

TStplustau <- TS[-(1:tau), ] # TS with first tau time pts removed

TSt <- TS[-((nT-5):nT), ] # TS with last tau time pts removed

The lag-0 empirical covariance matrix and the lag-τ empirical cross-covariance matrices

are now computed by taking their matrix cross-product and dividing by the appropriate

number of time points; see (2.4).
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Cov0 <- crossprod(TS)/nT

Covtau <- crossprod(TStplustau,TSt)/(nT - tau)

The estimates for M and Cη can now be estimated from these empirical covariance matri-

ces. As discussed in Appendix C.1, this can be done using the following code.

C0inv <- solve(Cov0)

Mest <- Covtau %*% C0inv

Ceta <- Cov0 - Covtau %*% C0inv %*% t(Covtau)

There are more efficient ways to compute the quantities above that ensure symmetry and

positive-definiteness of the results. In particular, the inverse rarely needs to be found ex-

plicitly. For further information, the interested reader is referred to standard books on linear

algebra (see, for example, Schott, 2017).

The matrices can be visualized using the function image.

image(Mest)

image(Ceta)

From visual inspection, the estimate of the propagator matrix, Mest, is by no means diag-

onally dominant, implying that there is benefit in assuming interactions between the EOFs

across time steps (see Section 5.3.2). Further, the estimated variances along the diagonal

of the covariance matrix of the additive disturbance in the IDE model, Cη, decrease with

the EOF index; this is expected as EOFs with higher indices tend to have higher-frequency

components.

Forecasting using this EOF-reduced model is straightforward as we take the coefficients

at the final time point, αt, propagate those forward, and re-project onto the original space.

For example, µ̂ + ΦM2αt gives a one-year forecast. Matrix powers (which represent

multiple matrix multiplications and do not come from elementwise multiplications) can be

implemented using the operator %ˆ% from the package expm; this will be used when we

implement the state-space model below. Here we consider six-month-ahead forecasts; in

the code below we project ahead the EOF coefficients of the time series at the 328th time

point (which corresponds to April 1997) six months into the future.

SSTlonlat$pred <- NA

alpha_forecast <- Mest %*% TS[328, ]

The projection onto the original space is done by pre-multiplying by the EOFs and adding

back the estimated spatial mean (see Section C.1).

idx <- which(SSTlonlat$mask == 0)

SSTlonlat$curr[idx] <- as.numeric(E$v[, 1:n] %*% TS[328, ] +
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spat_mean)

SSTlonlat$pred[idx] <- as.numeric(E$v[, 1:n] %*% alpha_forecast +

spat_mean)

Now we add the data to the data frame for plotting purposes.

SSTlonlat$obs1[idx] <- SSTdata[, 328]

SSTlonlat$obs2[idx] <- SST_Oct97

The six-month-ahead prediction variances can also be computed (see Appendix C.1).

C <- Mest %*% Cov0 %*% t(Mest) + Ceta

The prediction variances are found by projecting the covariance matrix C onto the original

space and extracting the diagonal elements. The prediction standard errors are the square

root of the prediction variances and hence obtained as follows.

SSTlonlat$predse[idx] <-

sqrt(diag(E$v[, 1:n] %*% C %*% t(E$v[, 1:n])))

Plotting proceeds in a straightforward fashion using ggplot2. In Figure 5.7 we show the

April 1997 data and the EOF projection for that month, as well as the October 1997 data

and the forecast for that month. From visual inspection, the El Niño pattern of high SSTs

is captured but the predicted anomaly is too low. This result is qualitatively similar to what

we obtained in Lab 3.3 using linear regression models.

State-Space Framework

The function DSTM_EM, provided with the package STRbook, runs the EM algorithm that

carries out maximum likelihood estimation in a state-space model. The function takes the

data Z, the initial covariance C0 in Cov0, the initial state µ0 in muinit, the evolution

operator M in M, the covariance matrix Cη in Ceta, the measurement-error variance σ2ǫ in

sigma2_eps, the matrix H in H, the maximum number of EM iterations in itermax,

and the tolerance in tol (the tolerance is the smallest change in the log-likelihood, multi-

plied by 2, required across two consecutive iterations of the EM algorithm, before terminat-

ing). All parameters supplied to the function need to be initial guesses (usually those from

the method of moments suffice); these will be updated using the EM algorithm.

DSTM_Results <- DSTM_EM(Z = SSTdata,

Cov0 = Cov0,

muinit = matrix(0, n, 1),

M = Mest,

Ceta = Ceta,
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Figure 5.7: Top: SST data for April 1997 (left) and October 1997 (right). Middle: the EOF

projection for April 1997 (left), and the forecast for October 1997 (right). Note the different

color scales for the predictions (up to 1◦C) and for the observations (up to 5◦C). Bottom:

Prediction standard errors for the forecast.

sigma2_eps = 0.1,

H = H <- E$v[, 1:n],

itermax = 10,

tol = 1)

The returned object DSTM_Results contains the estimated parameters, the smoothed

states and their covariances, and the complete-data negative log-likelihood. In this case,

estimates of {αt} using the state-space framework are practically identical to those obtained

using the time-series framework presented in the first part of the Lab. We plot estimates of

α1,t, α2,t, and α3,t below for the two methods; see Figure 5.8.

par(mfrow = c(1,3))

for(i in 1:3) {

plot(DSTM_Results$alpha_smooth[i, ], type = 'l',

xlab = "t", ylab = bquote(alpha[.(i)]))

lines(TS[, i], lty = 'dashed', col = 'red')

}

Let us turn now to inference on the parameters. From Appendix C.2 note that the EM

algorithm utilizes a Kalman filter that processes the data one time period (e.g., month) at
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Figure 5.8: Estimates of α1,t (left), α2,t (center), and α3,t (right) using the method of mo-

ments (red dashed line) and the EM algorithm (black solid line).

a time. (Recall that with the method of moments we let τ = 6 months, so we estimated

directly the state transitions over six months.) Therefore, inferences on the parameters and

their interpretations differ considerably. For example, the left and right panels of Figure 5.9

show the estimates of the evolution matrix for the two methods. At first sight, it appears

that the matrix estimated using the EM algorithm is indicating a random-walk behavior.

However, if we multiply the matrix M by itself six times (which then describes the evolution

over six months), we obtain something that is relatively similar to what was estimated using

the method of moments using a time lag of τ = 6 months.

To make the plots in Figure 5.9, we first cast the matrices into objects of class Matrix.

Note that using the function image on objects of class matrix generates similar plots

that are, however, less informative. On the other hand, plots of Matrix objects are done

using the function levelplot in the lattice package.

image(as(DSTM_Results$Mest, "Matrix"))

image(as(DSTM_Results$Mest %^% 6, "Matrix"))

image(as(Mest, "Matrix"))

Forecasting proceeds the same way as in the method of moments. Specifically, we take

the last smoothed time point (which corresponds to April 1997) and use the EM-estimated

one-month propagator matrix to forecast the SSTs six months ahead. This is implemented

easily using a for loop.

alpha <- DSTM_Results$alpha_smooth[, nT]

P <- DSTM_Results$Cov0

for(t in 1:6) {

alpha <- DSTM_Results$Mest %*% alpha

P <- DSTM_Results$Mest %*% P %*% t(DSTM_Results$Mest) +
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Figure 5.9: Estimate of a one-step-ahead evolution operator using the EM algorithm (left);

EM estimate raised to the sixth power (center); and estimate of the six-steps-ahead evolution

operator using the method of moments (right).

Figure 5.10: Forecasts (left) and prediction standard errors (right) for the EOF coefficients

in October 1997 using a lag-6 time-series model estimated using the method of moments

(black) and a lag-1 state-space model estimated using the EM algorithm (red).

DSTM_Results$Ceta

}

It is instructive to compare the predictions and the prediction standard errors of the

forecasted EOF coefficients using the two models; see Figure 5.10. While the predic-

tion standard errors for the state-space model are slightly lower (which is expected since

a measurement-error component of variability has been filtered out), it is remarkable that

forecasts from the lag-6 time-series model are quite similar to those of the lag-1 state-space
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model. These two models and their respective inferences can be expected to differ when

there is more nonlinearity in the process and/or the data are less complete in space and time.

In our concluding remarks, we remind the reader that in this Lab we considered a linear

DSTM for modeling SSTs. Recent research has suggested that nonlinear DSTMs may

provide superior prediction performance; see the case study in Appendix F.
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Chapter 6

Evaluating Spatio-Temporal

Statistical Models

How do you know that the model you fitted actually fits well? At the core of our approach

to the analysis of spatio-temporal data is a more or less detailed model containing statistical

components that are designed to capture the spatio-temporal variability in the data. This

chapter is about evaluating the spatio-temporal model that you fitted to describe (or to some

extent explain) the variability in your data.

Model building is an iterative process. We have data and/or a scientific hypothesis

and we build the model around them (e.g., using the methods of Chapters 3–5). Then we

must evaluate whether that model is a reasonable representation of the real world, and we

should modify it accordingly if it is not. Sometimes this process is called model criticism

because we are critiquing the strengths and weaknesses of our model, analogously to a

movie critic summing up a film in terms of the things that work and the things that do

not. In our case, we already know our model is wrong (recall Box’s aphorism), but we do

not know just how wrong it is. Just as there is no correct model, there is no correct way

to do model evaluation either. Rather, think of it as an investigation, using evidence from

a variety of sources, into whether the model is reasonable or not. In this sense, we are

“detectives” searching for evidence that our model can represent what we hope it represents

in our particular application, or we are like medical doctors running tests on their patients.

With that in mind, this chapter is about providing helpful suggestions on how to evaluate

models for spatio-temporal data.

We split our model-evaluation suggestions into three primary components: model

checking, model validation, and model selection. From our perspective, model checking

consists of evaluating our model diagnostically to check its assumptions and its sensitivity

to these assumptions and/or model choices. Model validation consists of evaluating how

well our model actually reproduces the real-world quantities that we care about. Model

selection is a framework in which to compare several plausible models. We consider each

253

Wikle, C. K., Zammit-Mangion, A., and Cressie, N. (2019), Spatio-Temporal Statistics with R, Boca Raton,

FL: Chapman & Hall/CRC. © 2019 Wikle, Zammit-Mangion, Cressie. https://spacetimewithr.org



254 Evaluating Spatio-Temporal Statistical Models

of these in some detail in this chapter.

It is important to note that the boundaries between these three components of model

evaluation are fairly “fluid,” and the reader may well notice that there is a great deal of

overlap in the sense that approaches discussed in one of these sections could be applied in

other sections. Such is the nature of the topic, especially in the context of spatio-temporal

modeling where, we must say, it is not all that well developed.

In this chapter we focus less on how to implement the methods in R and more on the

methods themselves. The reasons for this are twofold. First, several diagnostics are straight-

forward to calculate once predictive distributions are available. Second, there are only a few

packages that have a comprehensive suite of diagnostic tools. We also note that quite a few

more primary literature citations are included in this chapter than are given in the other

chapters of the book, because there has not been extensive discussion of the topic in the

spatio-temporal modeling literature.

In the next section, we digress slightly to discuss how model-based predictions can be

compared to observations appropriately, since the two have different statistical properties.

6.1 Comparing Model Output to Data: What Do We Compare?

Before we can talk about model evaluation, we have to decide what we will compare our

model to. Hierarchical spatio-temporal modeling procedures give us the predictive distribu-

tion of the latent spatio-temporal process, Y , given a (training) set of observations, Z, which

we represent as [Y |Z]. Because we are most often interested in this latent process, we would

like to evaluate our model based on its ability to provide reasonable representations of Y .

But by definition this process is hidden or latent – meaning that it is not observed directly

– and thus we cannot directly evaluate our modeled process against the true process unless

we do it through simulation (see Section 6.1.1 below). Alternatively, we can evaluate our

model using predictive distributions of data, where we compare predictions of data (not of

Y ), based on our model, against the actual observed data. In particular, there are four types

of predictive distributions of the data that we might use: the prior predictive distribution, the

posterior predictive distribution, what we might call the empirical predictive distribution,

and the empirical marginal distribution. Note that considering predictions of the data Z
instead of Y involves the additional uncertainty associated with the measurement process.

This is similar to standard regression modeling where the uncertainty of the prediction of

an unobserved response is higher than the uncertainty of inferring the corresponding mean

response. The four types of predictive distributions are defined in Section 6.1.2. Finally,

given that we have simulated predictive distributions of either the data or the latent process,

there is still the issue of which samples to compare. We touch on this in Section 6.1.3, with

a brief discussion of various types of validation and cross-validation samples that we might

use to evaluate our model.
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6.1.1 Comparison to a Simulated “True” Process

Although we do not have access to the latent process, Y , for evaluating our model, there

is a well-established simulation-based alternative for complex processes known as an ob-

servation system simulation experiment (OSSE; see Technical Note 6.1). The basic idea

of an OSSE is that one uses a complex simulation model to generate the true underly-

ing process, say Yosse, and then, one generates simulated data, say Zosse, by applying an

observation/sampling scheme to this true process that mimics the real-world sampling de-

sign and measurement technology. One can then use these OSSE-simulated observations

in the statistical model and compare Y obtained from the predictive distribution based on

the statistical model (i.e., [Y |Zosse]) against the simulated Yosse. The metrics used for such

a comparison could be any of the metrics that are described in the following sections of

this chapter. Not surprisingly, OSSEs are very useful when exploring different sampling

schemes and, in the geophysical sciences, they are important for studying complex earth

observing systems before expensive observing-system hardware is deployed. They are also

very useful for comparing competing methodologies that infer Y or scientifically meaning-

ful functions of Y .

Technical Note 6.1: Observation System Simulation Experiment, OSSE

Observation system simulation experiments are model-based simulation experiments

that are designed to consider the effect of potential observing systems on the ability to

recover the true underlying process of interest, especially when real-world observations

are not available. For example, these are used extensively in the geophysical sciences to

evaluate new remote sensing observation systems and new data assimilation forecast sys-

tems. However, they can also be used to evaluate the effectiveness of process modeling

for complex real-world processes in the presence of incomplete observations, or when

observations come at different levels of spatial and temporal support (see, for example,

Berliner et al., 2003). The typical OSSE consists of the following steps. Steps 1 and

2 correspond to simulation, and steps 3–5 are concerned with the subsequent statistical

analysis.

1. Simulate the spatio-temporal process of interest with a well-established (usually

mechanistic) model. This simulation corresponds to the “true process.” Note that

this is usually not a simulation from the statistical model of interest, since as much

real-world complexity as possible is put into the simulation; call it Yosse.

2. Apply an observation-sampling protocol to the simulated true process to obtain

synthetic observations. This sampling protocol introduces realistic observation

error (bias, uncertainty, and change of support) and typically considers various

missing-data scenarios; call the observations Zosse.

3. Use Zosse from step 2 in the spatio-temporal statistical model of interest, and ob-
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tain the predictive distribution [Y |Zosse] of the true process given the synthetic

observations.

4. Compare features of the predictive distribution of the true process from step 3 to

Yosse simulated in step 1.

5. Use the results of step 4 to either (a) refine the statistical model that was used to

obtain [Y |Zosse], or (b) refine the observation process, or both.

6.1.2 Predictive Distributions of the Data

The posterior predictive distribution (ppd) is best thought of in the context of a Bayesian

hierarchical model (BHM) and is given by (e.g., Gelman et al., 2014)

[Zppd|Z] =
∫∫

[Zppd|Y,θ][Y,θ|Z]dYdθ, (6.1)

where Zppd is a vector of predictions at some chosen spatio-temporal locations. We have

assumed that if we are given the true process, Y, and parameters, θ, then Zppd is independ-

ent of the observations Z. (Note that we are using the vector Y to represent the process here

to emphasize the fact that we are dealing with high-dimensional spatio-temporal processes.)

In the models considered in this book, one can easily generate samples of Zppd through

composition sampling. For example, generating posterior samples of Y and θ in the BHM

context comes naturally with Markov chain Monte Carlo (MCMC) implementations, and

these samples are just “plugged into” the data model [Zppd|Y,θ] to generate the random

draws of Zppd.

The prior predictive distribution (pri) corresponds to the marginal distribution of the

data and is given by

[Zpri] =

∫∫
[Zpri|Y,θ][Y|θ][θ]dYdθ, (6.2)

where Zpri is a vector of predictions at selected spatio-temporal locations. As with the ppd,

realizations from this distribution can be easily generated through composition sampling,

where in this case we simply generate samples of θ from its prior distribution, use those to

generate samples of the process Y from the process model, and then use these samples in

the data model to generate realizations of the data, Zpri. In contrast to the ppd, no MCMC

posterior samples need to be generated for this distribution.

Finally, in the empirical hierarchical model (EHM) context we define the empirical

predictive distribution (epd) as

[Zepd|Z] =
∫

[Zepd|Y, θ̂][Y|Z, θ̂]dY, (6.3)
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and the empirical marginal distribution (emp) as

[Zemp] =

∫
[Zemp|Y, θ̂][Y|θ̂]dY, (6.4)

where Zepd and Zemp are vectors of predictions at selected spatio-temporal locations. The

difference between (6.3) and (6.1), and between (6.4) and (6.2), is that instead of integrating

over θ (which is assumed to be random in the BHM framework), we substitute an estimate

θ̂ (e.g., a ML or REML estimate). Again, it is easy to sample from (6.3) and (6.4) by

composition sampling since, once θ̂ is obtained, we can generate samples of Y easily from

[Y|Z, θ̂] and from [Y|θ̂] with an MCMC. In the spatio-temporal Gaussian case, these are

known multivariate normal distributions. Then θ̂ and the samples of Y are “plugged into”

the data model to obtain samples of Zepd and Zemp, respectively.

For illustration, consider the IDE model fitted to the Sydney radar data set in Lab 5.2.

The top panels of Figure 6.1 show two samples from the epd for the time points 08:45,

08:55, and 09:05, while the bottom panels show two samples from the emp at the same

time points. We shall discuss model validation using the predictive distributions of the data

in Section 6.3.1, but simply “eyeballing” the plots may also reveal interesting features of

the fitted model. First, the two samples from the epd are qualitatively quite similar, and

this is usually an indication that the data have considerable influence on our predictive

distributions. These epd samples are also very different from the emp samples, adding

weight to the argument that the predictions in the top panels are predominantly data driven.

Second, the samples from emp are very useful in revealing potential flaws and strengths of

the model. For example, in this case the samples reveal that negative values for dBZ (green

and blue) are just as likely as positive values for dBZ (orange and red), while we know that

this is not a true reflection of the underlying science. On the other hand, the spatial length

scales, and the persistence of the spatial features in time are similar to what one would

expect just by looking at the data (see Section 2.1). These qualitative impressions, which

will be made rigorous in the following sections, play a big role in selecting and tuning

spatio-temporal models to improve their predictive ability.

R tip: Several R packages contain built-in functionality for sampling from one or more

of the predictive distributions listed in (6.1)–(6.4). For example, the function krige

in the package gstat can be used to generate simulations from both epd and emp, while

the function simIDE in the package IDE can be used to generate simulations from emp

after fitting an IDE model.

Wikle, C. K., Zammit-Mangion, A., and Cressie, N. (2019), Spatio-Temporal Statistics with R, Boca Raton,

FL: Chapman & Hall/CRC. © 2019 Wikle, Zammit-Mangion, Cressie. https://spacetimewithr.org



258 Evaluating Spatio-Temporal Statistical Models

Figure 6.1: Two samples from the empirical predictive distribution (top) and the empirical

marginal distribution (bottom), respectively, using the IDE model fitted to the Sydney radar

data set in Lab 5.2.

6.1.3 Validation and Cross-Validation

Most often we will have to compare real-world validation observations, say Zv, to obser-

vations predicted from our model, say Zp, from one (or all) of the four possibilities (ppd,

pri, epd, emp) given in the previous section. The question here is, to which observations

do we compare Zp? The generalization ability of a model is a property that says how well

it can predict a test data set (also referred to as a validation data set) that is different from

the data used to train the model. (Note that the words “test” and “validation” are often used

interchangeably in this context; we prefer to use “validation.”) So, assume that we have

used a sample of data, Z, to train our model. Before we describe the different possibilities

for selecting validation data Zv, note that spatio-temporal processes have certain properties

that should be considered when comparing model predictions to real-world observations. In

particular, as with time series, spatio-temporal processes have a unidirectional time depen-

dence and, like spatial processes, they have various degrees of spatial dependence. These

dependencies should be considered whenever possible when evaluating a spatio-temporal

model.

In general, the choice for validation observations Zv can then be one of the following.

(a) Training-data validation. It can be informative to use predicted observations of the

training data set (Zv = Z) to evaluate our model, particularly when evaluating the

model’s ability to fit the data and for checking model assumptions via diagnostics.
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However, in the context of prediction, it is not typically recommended to use the

training data for validating the model’s predictive ability, as the model’s training

error is typically optimistic in the sense that it underestimates the predictive error that

would be observed in an independent sample. Perhaps not surprisingly, the amount

of this optimism is related to how strongly a predicted value from the training data

set affects its own prediction (see Hastie et al., 2009, Chapter 7, for a comprehensive

overview).

(b) Within-sample validation. It is often useful to consider validation samples in which

one leaves out a collection of spatial observations at time(s) within the spatio-

temporal window defined by the extent of the training data set. Although one can

leave out data at random in such settings, a more appropriate evaluation of spatio-

temporal models results from leaving out “chunks” of data. This is because the spatio-

temporal dependence structure must be very well characterized to adequately fill in

large gaps for spatio-temporal processes (particularly dynamic processes). We saw

such an example in Chapter 4, where we left out one period of the NOAA maximum

temperature data but had observations both before and after that period.

(c) Forecast validation. One of the most-used validation methods for time-dependent

data is to leave out validation data beyond the last time period of the training period,

and then to use the model to forecast at these future time periods. To predict the

evolution of spatial features through time, the spatio-temporal model must adequately

account for (typically non-separable) spatio-temporal dependence. Hence, forecast

validation provides a gold standard for such evaluations.

(d) Hindcast validation. Hindcasting (sometimes known as backtesting) refers to using

the model to predict validation data at time periods before the first time period in the

training sample. Of course, this presumes that we have access to data that pre-dates

our training sample! This type of out-of-sample validation has similar advantages to

forecast validations.

(e) Cross-validation. There are many modeling situations where one needs all of the

available observations to train the model, especially at the beginning and end of the

data record. Or perhaps one is not certain that the periods in the forecast or hindcast

validation sample are representative of the entire period (e.g., when the process is

non-stationary in time). This is a situation where cross-validation can be quite help-

ful. Recall that we described cross-validation in Technical Note 3.1. In the context

of spatio-temporal models with complex dependence, one has to be careful that the

cross-validation scheme chosen respects the dependence structure. In addition, many

implementations of spatio-temporal models are computationally demanding, which

can make traditional cross-validation very expensive.
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In Lab 6.1 we provide an example of within-sample validation, where a 20-minute

interval from the Sydney radar data set is treated as validation data, and a model using

spatio-temporal basis functions is compared to an IDE model through their prediction per-

formances in this 20-minute interval.

Spatio-Temporal Support of Validation Data and Model Predictions

So far we have assumed that the validation data set, Zv, and the model-predicted obser-

vations, Zppd (say), are available at the same spatial and temporal support. In many ap-

plications this is not the case. For example, our model may produce spatial fields (defined

over a grid) at daily time increments, but observations may be station data observed every

hour. In some sense, if our data model is realistic, then we may have already accounted for

these types of change of support. In other cases, one may perform ad hoc interpolation or

aggregation to bring the validation and model support into agreement. This is a standard

approach in many meteorological forecasting studies (see, for example, Brown et al., 2012).

The hierarchical modeling paradigm discussed here does provide the flexibility for incorp-

orating formal change of support, but this is beyond the scope of this book (for more details,

see Cressie and Wikle, 2011, Chapter 7, and the references therein). In the remainder of this

chapter we shall assume that the validation sample and the associated model predictions are

at the same spatio-temporal support.

6.2 Model Checking

Now that we know what to compare to what, consider the first of our three types of model

evaluation: model checking. From our perspective, this corresponds to checking model

assumptions and the sensitivity of the model output to these assumptions and/or model

choices. That is, we evaluate our spatio-temporal model using statistical diagnostics. We

begin with a brief description of possible extensions of standard regression diagnostics,

followed by some simple graphical diagnostics, and then we give a brief description of

robustness checks.

6.2.1 Extensions of Regression Diagnostics

As in any statistical-modeling problem, one should evaluate spatio-temporal modeling as-

sumptions by employing various diagnostic tools. In regression models and GLMs, one

often begins such an analysis by evaluating residuals, usually obtained by subtracting the

estimated or predicted response from the data. Looking at residuals may bring our attention

to certain aspects of the data that we have missed in our model.

As discussed in Chapter 3, for additive Gaussian measurement error, we can certainly

do this in the spatio-temporal case by evaluating the spatio-temporal residuals,

ê(si; tj) ≡ Z(si; tj)− Ẑp(si; tj), (6.5)
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Figure 6.2: Histograms of errors at validation locations for the fitted IDE (blue) and FRK

(red) models for the time points that are omitted from the data (left) and for space-time

locations that are missing at random (right).

for i = 1, . . . ,m and j = 1, . . . , T , where Ẑp(si; tj) is the mean of the ppd or epd as

discussed in Section 6.1.2. Note that for notational simplicity we assume in this chapter

that we have the same number of observations (m) at the same spatial locations for each

time point. This need not be the case, and the equations can easily be modified to represent

the more general setting of a different number of observations at different locations for each

time point.

In Figure 6.2 we show the histograms of the spatio-temporal residuals obtained for the

two models evaluated in Lab 6.1 using validation data for an entire 20-minute block (left

panel) and at random locations (right panel). It is clear from these histograms that for both

types of missingness, the variance of the residuals based on the IDE model is slightly lower

than that based on the model used by the FRK model.

In addition to the classical residuals given in (6.5), we can consider deviance or Pear-

son chi-squared residuals for non-Gaussian data models (as discussed in Chapter 3). Given

spatio-temporal residuals, it is usually helpful to visualize them using the various tools dis-

cussed in Chapter 2 (see Lab 6.1). In addition, as discussed in Chapter 3, one can consider

quantitative summaries to evaluate residual temporal, spatial, or spatio-temporal depend-

ence, such as with the PACF, Moran’s I , and S-T covariogram summaries. In the case of

the latter, one may also consider more localized summaries, known as local indicators of

spatial association (LISAs) or their spatio-temporal equivalents (ST-LISAs) where the com-

ponent pieces of a summary statistic are indexed by their location and evaluated individually

(see Cressie and Wikle, 2011, Section 5.1).

Diagnostics have also been developed specifically for models with spatial dependence

that are easily extended to spatio-temporal models. For example, building on the ground-
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breaking work of Cook (1977), Haslett (1999) considered a simple approach for “deletion

diagnostics” in models with correlated errors. For example, if one has a model such as

Z ∼ Gau(Xβ,Cz), then interest is in the effect of leaving out elements of Z on the esti-

mation of β. Analogously to K-fold cross-validation discussed in Chapter 3, assume we

split our observations into two groups, Z = {Zb,Zv}, and then we predict Zv based only on

training data Zb, which we denote by Ẑ(−v). Then, as with standard (independent and iden-

tically distributed (iid) errors) regression, one can form diagnostics in the correlated-error

context, analogous to the well-known DFBETAS and Cook’s distance diagnostics. These

compare the regression coefficients estimated under the hold-out scenario (say, β̂
(−v)

) to

the parameters estimated using all of the data (β̂), and Haslett (1999) provides some effi-

cient approaches to obtain β̂
(−v)

. It is important to note that these diagnostics are based on

the cross-validated residuals,

êv ≡ Zv − Ẑ(−v), (6.6)

rather than the within-sample residuals given by (6.5).

6.2.2 Graphical Diagnostics

Several diagnostic plots have proven useful for evaluating predictive models, and these

largely depend on the observation type. Recall, from our discussions in Chapters 3–5, that it

is fairly straightforward to model spatio-temporal binary or count data using the techniques

we described within a GLM framework. Our discussion below on graphical diagnostics

covers the most common types of data encountered in practice.

When considering binary outcomes, which are common when observing processes such

as occupancy (presence–absence) in ecology, and precipitation (rain or no rain) in meteorol-

ogy, there is a long tradition in statistics and engineering of considering a receiver operating

characteristic (ROC) curve. For binary data, a statistical model (say, a Bernoulli data model

with a logit link function) provides an estimate of the probability that the outcome is a 1

(versus a 0). Then, for predictions, a threshold probability is typically set, and the predicted

outcome is put equal to 1 if the estimated probability is larger than the threshold, and put

equal to 0 if not. Clearly, the performance of the predictions will depend on the threshold.

The ROC plot presents the true positive rate (i.e., sensitivity, namely the percentage of 1s

that were correctly predicted) on the y-axis versus the false positive rate (i.e., 1 minus the

specificity, namely the percentage of 0s that were incorrectly predicted to be 1s) on the

x-axis as the value of the threshold probability changes (from 0 to 1). Since we prefer a

model that gives a high true positive rate and low false positive rate, we like to see ROC

curves that are well above the 45-degree line. One often summarizes an ROC curve by the

area under the ROC curve (sometimes abbreviated as “area under the curve” (AUC)), with

the best possible area being 1.0 and with a value of 0.5 corresponding to a “no information”

(i.e., a coin-flipping) model. Figure 6.3 shows two ROC curves for a data set based on 100

simulated Bernoulli responses from a logistic regression model with simulated covariates.

Wikle, C. K., Zammit-Mangion, A., and Cressie, N. (2019), Spatio-Temporal Statistics with R, Boca Raton,

FL: Chapman & Hall/CRC. © 2019 Wikle, Zammit-Mangion, Cressie. https://spacetimewithr.org



Model Checking 263

Figure 6.3: ROC curves for two models fitted to a simulated Bernoulli (binary) data set

with 100 observations that was generated from a logistic regression model with simulated

covariates. The black line corresponds to the ROC curve for a simpler logistic regression

model (“Model A”) with a corresponding AUC = 0.89, and the red line is the ROC curve

for a model (“Model B”) based just on random guessing with AUC = 0.59. This figure was

obtained using the roc.plot function in the verification R package.

The black ROC curve corresponds to a simple model (a logistic regression model with fewer

covariates than used for the simluation) and the red ROC curve corresponds to flipping a

coin (random guessing). The AUCs for the two models are 0.89 and 0.59, respectively.

Although useful for evaluating prediction, the ROC curve is limited in that it is generally

insensitive to prediction biases (see Wilks, 2011, Chapter 8).

R tip: ROC curves can be easily generated in R using the functions prediction and

performance from the package ROCR or the function roc.plot from the package

verification.

There are several diagnostic plots that are used for meteorological forecast validation

but are less commonly used in statistics (see Wilks, 2011, Chapter 8). Some of these plots

attempt to show elements of the joint distribution of the prediction and the corresponding

validation observation. As an example, conditional quantile plots are used for continuous

responses (e.g., temperature). In particular, these plots consider predicted values on the

x-axis and the associated quantiles from the empirical predictive distribution of the obser-

vations associated with the predictions on the y-axis. This allows one to observe potential

problems with the predictive model (e.g., biases). This is better seen in an example. The
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left panel of Figure 6.4 shows a conditional quantile plot for simulated data in a situation

where the predictive model is, on average, biased high relative to the observations by about

3 units. This can easily be seen in this plot since the conditional distribution of the ob-

servations given the predictions is shifted below the 45-degree line. In the right panel of

Figure 6.4 we show the conditional quantile plot for the IDE model predictions in Lab 6.1

for the missing 20-minute interval. The predictions appear to be unbiased except when the

observed reflectivity is close to the zero.

Similar decomposition-based plots can be used for probabilistic predictions of discrete

events (e.g., the reliability diagram and the discrimination diagram; see Wilks, 2011, Chap-

ter 8, and the R package verification) and have an advantage over the ROC plot since they

display the joint distribution of prediction and corresponding observations and thus can

reveal forecast biases.

R tip: Conditional quantile plots can be generated in R using the function

conditional.quantile from the package verification.

When one has samples from a predictive distribution (as described in Section 6.1.2)

or an ensemble forecasting model (such as described in Appendix F), there are additional

graphical assessments that can be informative to evaluate a model’s predictive performance.

Consider the so-called verification ranked histogram. Suppose we have nf different predic-

tive situations, each with an observation (an element of Zv, say Zi
v, for i = 1, . . . , nf ) to

be used in verification, and for each of these predictions we have ns samples from the pre-

dictive distribution, say [Zi
epd|Zb], i = 1, . . . , nf , where Zepd is a sample of size ns (note

that we could just as easily consider the ppd here). For each of the nf predictive situations

we calculate the rank of the observation relative to the ordered ns samples; for example,

if the observation is less than the smallest sample member, then it gets a rank of 1, if it is

larger than the largest sample member, it gets a rank of ns+1, and so on. If the observation

and the samples are from the same distribution, then the rank of the observation should

be uniformly distributed (since it is equally likely to fall anywhere in the sample). Thus,

we plot the nf ranks in a histogram and look for deviations from uniformity. As shown in

Wilks (2011, Chapter 8), deviations from uniformity can suggest problems such as bias or

over-/under-dispersion.

As an example, Figure 6.5 shows verification histograms for three cases of (simu-

lated) observations using the Rankhist and PlotRankhist functions in the package

SpecsVerification. Each example is based on nf = 2000 verification observations (i.e.,

{Zi
v, i = 1, . . . , 2000}) and ns = 20 samples from the associated predictive distribution

[Zi
epd|Zb] for each of these verification observations. The left panel shows a case where

the predictive distribution is under-dispersed relative to the observations and the right panel

shows a case where the predictions are biased low relative to the observations. The center
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Figure 6.4: Left: Conditional quantile plot for 1000 simulated observations and predic-

tions in which the model produces predictions that are biased approximately 3 units high

relative to the observations. Right: Conditional quantile plot for the IDE model predic-

tions in the missing 20-minute gap in Lab 6.1. These figures were obtained using the

conditional.quantile function in the verification R package. Note that the x-axis

gives the histogram associated with the verification observations {Zi
v, i = 1, . . . , nf} and

the colored lines in the plot correspond to smooth quantiles from the conditional distribution

of predicted values for each of these verification observations.

panel shows a case where the observations and predictions are from the same distribution,

which implies rank uniformity. Note that there is a reasonable amount of sampling vari-

ability in these rank histograms. It is fairly straightforward to use a chi-squared test to

test a null hypothesis that the histogram corresponds to a uniform distribution (see Weigel,

2012). The SpecsVerification package will implement this test in the context of the rank

histogram. For the simulated example, the p-values for the left-panel and right-panel cases

in Figure 6.5 are very close to 0, resulting in rejection of the null hypothesis of rank uni-

formity, whereas the case represented by the center panel has a p-value close to 0.8, so that

rank uniformity is not rejected.

The graphical methods described here are not really designed for spatio-temporal data.

One might be able to consider predictions at different time periods and spatial locations as

different cases for comparison, but spatio-temporal dependence is not explicitly accounted

for in such comparisons. This could be problematic as predictions in close proximity in

space and time are spatio-temporally correlated, and it is therefore relatively easy to select

a subset of points that indicate that predictions are biased, when in reality they are not.
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Figure 6.5: Verification ranked histograms corresponding to nf = 2000 simulated obser-

vations and ns = 20 samples from the associated predictive distribution for these 2000

observations. Left: the predictive distribution is under-dispersed relative to the observa-

tions; Center: the predictive distribution and the observation distribution appear the same

(rank uniformity); Right: the predictive distribution is biased low relative to the observa-

tions. This figure was obtained using the Rankhist function in the SpecsVerification R

package.

Any apparent bias could be a fortuitous outcome of the space-time locations chosen for

validation. One way to get around this issue is to consider predictions at different (well-

separated) time points at the same location in space (so as to break the spatio-temporal

dependence). Then one could look at several such plots for different locations in space to

gain an appreciation for the geographical influence on model performance. In the context

of the rank histogram, there have been some attempts to consider multivariate predictands

(e.g., multiple locations in space and/or multivariate responses), but the challenge then is

to develop ranks in this multivariate setting. Perhaps the most useful such approach is

based on the so-called minimum spanning tree histograms; see the summary in Wilks (2011,

Chapter 8). The development of graphical diagnostics for spatio-temporal data is very much

a research topic at the time of writing.

6.2.3 Sensitivity Analysis

An important part of model evaluation is the notion of robustness. Informally, we might

say that model robustness is an evaluation of whether certain model assumptions have too

much influence on model predictions. (This is a bit different from the more classical topic

of robust estimation of model parameters.) Here we focus on the relatively simple notion of

sensitivity analysis in the context of spatio-temporal modeling. In a sensitivity analysis, we

evaluate how much our predictions change as we vary some aspect of our model (e.g., the

number of basis functions or the degree of spatial dependence in an error distribution). We

briefly describe some heuristic approaches to sensitivity analysis in this section, but we note
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that the validation statistics described below in Section 6.3 could also be used as metrics to

evaluate model sensitivity.

In the case where we fix certain parameters at their estimates (e.g., covariance para-

meters in S-T kriging), we should evaluate the sensitivity of the model predictions to the

estimated values. Note that a common criticism of such empirical plug-in approaches (used

in an EHM implementation) is that they do not capture sufficient variability (e.g., relative to

a BHM implementation) because they do not take the uncertainty of the parameter estimates

directly into account. Nonparametric bootstraping could be used, but it can be challenging

to take bootstrap samples that adequately represent the dependence structure in the spatio-

temporal data. So, to evaluate the sensitivity of model predictions to fixing parameters at

their data-based estimates, one might consider how sensitive the prediction errors are to the

fixed parameters, θ, being estimated by two different methods, say using MLE and REML.

Then, as in the spatial setting of Kang et al. (2009), we can consider heuristic measures

such as the ratio of predictive standard deviations. In the spatio-temporal setting, this can

be written as [
var(Y (s; t)|Z, θ̂a)
var(Y (s; t)|Z, θ̂b)

]1/2
, (6.7)

where Z represents the data, θ̂a and θ̂b are two parameter estimates (e.g., ML and REML

estimates), and var(Y (s; t)|Z,θ) represents the process’ predictive variance at (s; t) for

fixed θ. Clearly, if the ratio in (6.7) is close to 1, then it suggests that there is little sensitivity

in the predictive standard deviations relative to differences in the parameter estimates θ̂a and

θ̂b.

Similarly, we might compare the standardized differences in predictive means,

E(Y (s; t)|Z, θ̂a)− E(Y (s; t)|Z, θ̂b)
{var(Y (s; t)|Z, θ̂b)}1/2

, (6.8)

where E(Y (s; t)|Z,θ) is the predictive mean for fixed θ. In this case, if (6.8) is close to

0, it suggests that the predictive means are not overly sensitive to these parameter-estimate

differences. We also note that (6.7) and (6.8) are given for an individual location (s; t) in

space and time, but one could do additional averaging over regions in space and/or time

periods and/or produce plots in space and time.

For illustration, consider the maximum temperature in the NOAA data set fitted using

a Gaussian process, as in Lab 4.1. One can fit the theoretical semivariogram to the data

using either least squares or weighted least squares. What, then, is the sensitivity of our

predictions to the choice of fitting method? With gstat, one can call fit.StVariogram

with fit.method = 6 (default) for least squares, or fit.method = 2 for weights

based on the number of data pairs in the spatio-temporal bins used to construct the empir-

ical semivariogram (see Cressie, 1993, Chapter 2). For a grid cell at (100◦W, 34.9◦N) on

14 July 1993, the ratio of the predictive standard deviations is 1.03, while the standardized
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difference in the predictive means is 0.00529. When can a spatio-temporal model be con-

sidered robust in terms of its predictions? The answer to this question largely depends on

the reason why the model was fitted in the first place and is application-dependent, but, in

the context of these maximum-temperature data, it is reasonable to say that the estimation

method chosen does not seem to impact the predictions at the chosen space-time location

in a substantial way.

In Bayesian implementations of spatio-temporal models, we may still be interested in

the sensitivity of our posterior distributions to certain parameters or model assumptions.

In this case we could make different model assumptions and compare samples of Y from

the posterior distribution or samples of Zppd from the ppd. Comparisons could be made

using measures analogous to (6.7) and (6.8) or more general measures of distributional

comparisons discussed below in Section 6.3. In the context of MCMC algorithms that

generate posterior samples, this can be costly in complex models as it requires that one

fit the full model with possibly many different data-model, process-model, and parameter-

model distributions.

6.3 Model Validation

Recall that model validation is simply an attempt to determine how closely our model repre-

sents the real-world process of interest, as manifested by the data we observe. Specifically,

after checking our model assumptions through diagnostics and sensitivity analysis, we can

validate it against the real world. Although by no means exhaustive, this section presents

some of the more common model-validation approaches that are used in practice.

6.3.1 Predictive Model Validation

One of the simplest ideas in model validation is to assess whether the data that are generated

from our fitted model “look” like data that we have observed. That is, we can consider

samples of Zppd or Zepd from the ppd or the epd, respectively, as described in Section

6.1.2. Given that we have samples of Zppd or of Zepd, what do we do with them?

As in Section 6.2, we refer to these samples simply as Zp. We can look at any dia-

gnostics we like to help us discern how similar these draws from the ppd or the epd are

to the observed data – remember, we are trying to answer the question as to whether the

observed data look reasonable based on the predictive distribution obtained from our model.

These diagnostics are sometimes called predictive diagnostics. Here, discussion focuses

on posterior predictive diagnostics based on the ppd, but there is an obvious analog of

empirical predictive diagnostics where one considers the epd rather than the ppd.

As outlined in Gelman et al. (2014), a formalization of this notion is to consider a

discrepancy measure, T (Z;Y,θ). The discrepancy T (·) is specified by the modeler and

may be a measure of overall fit (e.g., a scoring rule such as described in Section 6.3.4) or
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any other feature of the data, the process, and the parameters. So, one calculates T (·) for

each of L replicates of the simulated data, and also for the observed data.

We now change notation slightly to show in detail how posterior predictive dia-

gnostics can be constructed. Specifically, for the simulated observations, we calculate

{T (Z(ℓ)
p ;Y(ℓ),θ(ℓ)) : ℓ = 1, . . . , L} for the L replicates {Z(ℓ)

p } sampled from [Zp|Z] based

on the samples {Y(ℓ),θ(ℓ)} from [Y,θ|Z]. Simple scatter plots of the discrepancy mea-

sures from the replicated data samples, T (Z
(ℓ)
p ;Y(ℓ),θ(ℓ)), versus the discrepancy measure

from the observed data, T (Zp;Y
(ℓ),θ(ℓ)), can be informative. For example, if the points are

scattered far from a 45-degree line, then we can assume that for this choice of T the model is

not generating data that behave like the observations (e.g., see Gelman et al., 2014, Section

6.3).

We can make this procedure less subjective by considering posterior predictive p-

values, which are given by

pB = Pr(T (Zp;Y,θ) ≥ T (Z;Y,θ)|Z),

where the probability is calculated based on the samples {T (Z(ℓ)
p ;Y(ℓ),θ(ℓ)) : ℓ =

1, . . . , L}. In general, values of pB close to 0 or 1 cast doubt on whether the model

produces data similar to the observed Z (relative to the chosen discrepancy measure), in

which case one may need to reconsider the model formulation. It is important to reiterate

that this “p-value” is best used as a diagnostic procedure, not for formal statistical testing.

As mentioned, one can also construct analogous predictive diagnostics based on the prior

predictive distribution (i.e., prior predictive p-values), the empirical predictive distribution

(i.e., empirical predictive p-values), and the empirical marginal distribution (i.e., empirical

marginal p-values). In the epd context, this has been formulated as a Monte Carlo test for

validation (e.g., Kornak et al., 2006).

For illustration, consider the example of Section 6.1.2 (Sydney radar data set and the

IDE model). We chose discrepancy measures to be the minimum (Tmin) and maximum

(Tmax) radar reflectivity across the grid boxes with centroid at s1 = 26.25 (i.e., a vertical

transect) over the three time points shown in Figure 6.1. In Figure 6.6 we plot the empir-

ical marginal distributions and empirical predictive distributions for these two discrepancy

measures as obtained from L = 500 replications, together with the observed minimum and

maximum. In both of these cases, and for both distributions, the p-values are greater than

0.05, suggesting a reasonable fit. Specifically, the empirical marginal p-value and empirical

predictive p-value for Tmin were 0.09 and 0.442, respectively, while the p-values for Tmax

were 0.364 and 0.33, respectively (note that the p-values we report are min(pB, 1− pB)).

6.3.2 Spatio-Temporal Validation Statistics

Perhaps the most common scalar validation statistic for continuous-valued spatio-temporal

processes is the mean squared prediction error (MSPE), which for spatio-temporal valida-

tion sample {Zv(si; tj) : j = 1, . . . , T ; i = 1, . . . ,m}, and corresponding predictions

Wikle, C. K., Zammit-Mangion, A., and Cressie, N. (2019), Spatio-Temporal Statistics with R, Boca Raton,

FL: Chapman & Hall/CRC. © 2019 Wikle, Zammit-Mangion, Cressie. https://spacetimewithr.org



270 Evaluating Spatio-Temporal Statistical Models

Figure 6.6: Empirical marginal distribution (green) and empirical predictive distribution

(blue) densities for the minimum (Tmin, left) and maximum (Tmax, right) radar reflectivities

across all grid boxes with centroid at s1 = 26.25 (i.e., a vertical transect) for the times

shown in Figure 6.1. In both panels, the red line denotes the observed statistic.

{Ẑv(si; tj)}, is given by

MSPE =
1

Tm

T∑

j=1

m∑

i=1

{Zv(si; tj)− Ẑv(si; tj)}2,

where again, for convenience, we have assumed the same number of spatial observations

for each time period (which simplifies the notation, but different numbers of spatial loca-

tions for each time are easily accommodated). In this section we assume that {Ẑv(si; tj)}
are predictions based on all of the data, Z (we relax that assumption in Section 6.3.3).

Sometimes one might be interested in looking at MSPE for a particular time point, aver-

aged across space, or for a particular spatial location (or region), averaged across time. The

MSPE summary is so popular because it is an empirical measure of expected squared error

loss which, when minimized, results in the S-T kriging predictor. In addition, the MSPE

can be decomposed into a term corresponding to the bias (squared) of the predictor plus a

term corresponding to the variance of the predictor. This is important because a large part of

model-building consists of exploring the trade-offs between bias and variance. It is equally

common to consider the root mean squared prediction error (RMSPE), which is simply the

square root of the MSPE. This is sometimes favored because the units of the RMSPE are

the same as those of the observations.

In cases where one wishes to protect against the influence of outliers, it is common to

consider the mean absolute prediction error (MAPE), which can be computed from

MAPE =
1

Tm

T∑

j=1

m∑

i=1

|Zv(si; tj)− Ẑv(si; tj)|.
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Although a useful summary for validation, the MAPE does not have the natural decompo-

sition into bias and variance components that the MSPE does. But we note that for errors

that do not exhibit bias, the MAPE can be interpreted as a robust version of the RMSPE.

Another common scalar validation statistic for spatio-temporal data is the so-called

anomaly correlation coefficient (ACC). This is the usual Pearson product moment formula

for correlation (i.e., the empirical correlation) applied to anomalies of the observations

and predictions. Anomalies (which is a term that comes from the atmospheric sciences)

are just deviations with respect to a long-term average of the observations (e.g., clima-

tology in atmospheric applications). That is, let Z ′
v(si; tj) ≡ Zv(si; tj) − Za(si) and

Ẑ ′
v(si; tj) ≡ Ẑv(si; tj) − Za(si) be the anomalies of the validation observations and cor-

responding predictions relative to the time-averaged observation, Za(si), at location si, for

i = 1, . . . ,m. Then the ACC is just the empirical correlation between {Z ′
v(si; tj)} and

{Ẑ ′
v(si; tj)}. This can be calculated across all time periods and spatial locations, or across

time for each spatial location separately (and plotted on a map), or across space for each

time period separately (and plotted as a time series). As with any correlation measure, the

ACC does not account for bias in predictions relative to the observations, but it is still use-

ful for spatial-field validation as it does detect phase differences (shifts) between fields. In

contrast, the MSPE captures bias and variance and is not invariant to linear association.

The statistics literature has considered several simple heuristic validation metrics for

spatio-temporal data. For example, in the context of within-sample validation, for spatio-

temporal validation data {Zv(si; tj)} and corresponding mean predictions {Ẑv(si; tj)}, one

can consider the following spatial validation statistics based on residuals and predictive

variances as outlined in Carroll and Cressie (1996):

V1(si) =
(1/T )

∑T
j=1{Zv(si; tj)− Ẑv(si; tj)}

(1/T ){∑T
j=1 var(Zv(si; tj)|Z)}1/2

, (6.9)

V2(si) =

[
(1/T )

∑T
j=1{Zv(si; tj)− Ẑv(si; tj)}2

(1/T )
∑T

j=1 var(Zv(si; tj)|Z)

]1/2
, (6.10)

V3(si) =


 1

T

T∑

j=1

{Zv(si; tj)− Ẑv(si; tj)}2


1/2

, (6.11)

where var(Zv(si; tj)|Z) is the predictive variance. The summary V1(si) provides a sense

of the bias of the predictors in space (i.e., we expect this value to be close to 0 if there is

no predictive bias). Similarly, V2(si) provides a measure of the accuracy of the MSPEs and

should be close to 1 if the model estimate of prediction error is reasonable. Finally, V3(si) is

a measure of goodness of prediction, with smaller values being better – this is more useful

when our model is compared to some baseline model or when there is a comparison of

several models. It is often helpful to plot these summary measures as a function of space to

identify if certain regions in space show better predictive performance. Note that equivalent
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temporal validation statistics, in obvious notation V1(t), V2(t), V3(t), can be obtained by

replacing the averages over the time points with averages over the spatial locations. These

can then be evaluated analogously to the spatial versions, and plotted as time series to see

if certain time periods show better performance than others.

R tip: Several R packages contain functionality for computing these simple validation

statistics. However, these can be implemented directly by the user with a few lines

of code using functions that take three arguments (the data, the predictions, and the

prediction standard errors) as input. For example,

V1 <- function(z, p, pse) sum(z - p) / sqrt(sum(pseˆ2))

implements (6.9). Our suggestion is to implement them once and keep them handy!

6.3.3 Spatio-Temporal Cross-Validation Measures

The validation measures presented in Section 6.3.2 above are often used for within-sample

validation, and thus they are naturally optimistic measures in the sense that the data are

being used twice (once to train the model and once again to validate the model). As we

have discussed in Section 6.1.3, it is much better to use a hold-out validation sample if

possible, but such validation may be difficult to come by (or, in the case of spatio-temporal

dependence, difficult to select). In that case, it is common to use cross-validation methods

(recall Technical Note 3.1) with your favorite validation measures (e.g., MSPE, MAPE,

(6.9)–(6.11) above or the scoring rules presented in Section 6.3.4). There have been a few

examples in the literature of specific cross-validation statistics for spatio-temporal data,

which we briefly describe here.

As a direct example in the case of leave-one-out-cross-validation (LOOCV), one might

extend the notion of cross-validation residuals given in (6.6) (e.g., Kang et al., 2009) to

{
Z(si; tj)− E(Z(si; tj)|Z(−i,−tj))

{var(Z(si; tj)|Z(−i,−tj))}1/2

}
,

where Z(−i,−tj) corresponds to the data with observation Z(si; tj) removed. These resid-

uals can be explored for outliers and potential spatio-temporal dependence (as described

in Section 6.2.1 above). Similarly, we can consider predictive cross-validation (PCV) and

standardized cross-validation (SCV) measures (e.g., Kang et al., 2009),

PCV ≡
(

1

mT

) T∑

j=1

m∑

i=1

{Z(si; tj)− E(Z(si; tj)|Z(−i,−tj))}2 (6.12)
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and

SCV ≡
(

1

mT

) T∑

j=1

m∑

i=1

{Z(si; tj)− E(Z(si; tj)|Z(−i,−tj))}2
var(Z(si; tj)|Z(−i,−tj))

. (6.13)

Note the similarity between (6.11) and (6.12), and between (6.10) and (6.13). If our model

is performing well, we would like to see values of PCV near 0 and values of SCV close

to 1. Of course, these evaluation criteria can be considered from a K-fold cross-validation

perspective as well.

6.3.4 Scoring Rules

One of the benefits of the statistical methods presented in Chapters 4 and 5 is that they

give probabilistic predictions – that is, we do not just get a single prediction but, rather, a

predictive distribution. This is a good thing as it allows us to account for various sources

of uncertainty in our predictions. However, it presents a bit of a problem in that ideally

we want to verify a distributional prediction but we have just one set of observations. We

need to find a way to compare a distribution of predictions to a single realized (validation)

observation. Formally, this can be done through the notion of a score, where the predictive

distribution, say p(z), is compared to the validation value, say Z, with the score function

S(p(z), Z). There is a long history in probabilistic forecast “verification,” originating in the

meteorology community, of favoring scoring functions that are proper; see Technical Note

6.2 for a description of proper scoring rules and Gneiting and Raftery (2007) for technical

details.

Intuitively, proper scoring rules are expressed in such a way that a forecaster receives

the best score (on average) if their forecast distribution aligns with their true beliefs. This

relates to the notion of “forecast consistency” discussed in Murphy (1993), which concerns

how closely the forecaster’s prediction matches up with their judgement. The point here

is that there may be incentives for a forecaster to hedge their forecast away from their

true beliefs, and this should be discouraged. For example, Carvalho (2016) and Nakazono

(2013) describe a situation where an expert with an established reputation might tend to

report a forecast closer to the consensus of a particular group, whereas a forecaster who

is just starting out might seek to increase her reputation by overstating the probabilities of

particular outcomes that she thinks might be understated in the consensus. Proper scoring

rules are designed such that there is no reward for this type of hedging.

Three common, and related, (strictly) proper scoring rules used in spatial and spatio-

temporal prediction are the Brier score (BRS), the ranked probability score (RPS), and the

continuous ranked probability score (CRPS). The BRS can be used to compare probability

predictions for categorical variables. It is most often used when the outcomes are binary,

{0, 1}, events. Assuming Z is a binary observation and p = Pr(Z = 1|data) comes from

the model, the BRS is defined as

BRS(p, Z) = (Z − p)2, (6.14)
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where, as in golf, small scores are good. (Note that in this section, where possible, we

omit the space and time labels for notational simplicity and just present the rules in terms

of arbitrary predictive distributions and observations.) In practice, we calculate the average

BRS for a number of predictions and associated observations in the validation data set. The

BRS can be decomposed into components associated with prediction “reliability, resolution,

and uncertainty” (see, for example, Wilks, 2011, Chapter 8). Note that there are several

other skill scores that could also be used for binary responses (e.g., the Heidke skill score,

Peirce skill score, Clayton skill score, and Gilbert skill score) that are based on comparing

components of a 2× 2 contingency table (see Wilks, 2011, Chapter 8).

Some of the scoring rules used for binary data can be extended to multi-category pre-

dictions, although in the case of ordinal data one should take into account the relative “dis-

tance” (spread or dispersion) between categories (see, for example, the Gandin–Murphy

skill score and Gerrity skill score described in Wilks, 2011, Chapter 8). The ranked proba-

bility score is a multi-category extension to the BRS given by

RPS(p, Z) =
1

J − 1

J∑

i=1




i∑

j=1

Zj −
i∑

j=1

pj




2

, (6.15)

where J is the number of outcome categories, pj is the predicted probability of the jth
category, and Zj = 1 if the category occurred, and Zj = 0 otherwise. Note that (6.15)

depends on an ordering of the categories and, when J = 2, we recover the Brier score

(6.14). A perfect prediction leads to the case where RPS = 0 and the worst possible score

is RPS = 1. RPS is strictly proper and accounts for the distance between groups, which is

important for ordinal data. As with the BRS, in practice we typically calculate the average

RPS for a number of predictions at different spatio-temporal locations in the validation data

set.

A natural extension of the RPS to the case of a continuous response occurs if we imag-

ine that we bin the continuous response into J ordered categories and let J → ∞. The

continuous ranked probability score has become one of the more popular proper scoring

rules in spatio-temporal statistics. It is formulated in terms of the predictive cumulative

distribution function (cdf), say F (z), and is given by

CRPS(F,Z) =

∫
(1{Z ≤ x} − F (x))2dx,

where 1{Z ≤ x} is an indicator variable that takes the value 1 if Z ≤ x, and the value

0 otherwise. An illustration of the procedure by which the CRPS is evaluated is shown in

Figure 6.7, for an observation Z = 6 and F (x) the normal distribution function with mean

6.5 and standard deviation 1. In this example, CRPS = 0.331.

In the case where the cdf F has a finite first moment, the CRPS can be written as

CRPS(F,Z) = EF |z − Z| − 1

2
EF |z − z′|, (6.16)
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Figure 6.7: Left: The cumulative distribution function, F (x), of a prediction with mean 6.5

and prediction standard error 1. The observation is Z = 6, and the shaded area denotes the

difference between the cumulative distribution function of the observation (a step function)

and the predictive distribution. Right: The integrand used to compute the CRPS, the area

under the curve.

where z and z′ are independent random variables with distribution function F (e.g., Gneit-

ing and Raftery, 2007). Thus, analytical forms for the CRPS can be derived for many

standard predictive cumulative distribution functions, and hence for these functions it can

be computed efficiently (see, for example, the scoringRules R package). However, the

CRPS can be difficult to compute for complex predictive distributions such as one might

get from a BHM. In such situations, one can approximate the CRPS by using an empirical

predictive cdf.

For example, given samples of predictions, Z1, . . . , Zm, from F , one can show that

(e.g., Jordan et al., 2017b)

CRPS(F̂m, Z) =
1

m

m∑

i=1

|Zi − Z| − 1

2m2

m∑

i=1

m∑

j=1

|Zi − Zj |, (6.17)

where the empirical cdf,

F̂m(x) =
1

m

m∑

i=1

1{Zi ≤ x}, (6.18)

is substituted into (6.16). More efficient computational approaches can be used to estimate

(6.16), as discussed in Jordan et al. (2017b). Note that (6.18) implicitly assumes that the

{Zi} are iid, which is a reasonable assumption when one has multiple predictions (widely

separated in time) for a given location. However, the iid assumption is not typically realistic

for spatio-temporal validation data sets with multiple observations (see the discussion below

on multivariate scoring rules for an alternative).
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In the common case where one is only interested in evaluating the predictive distribution

through its first two central moments, say µF and σ2F , Gneiting and Katzfuss (2014) suggest

considering the Dawid–Sebastiani score (DSS),

DSS(F,Z) =
(Z − µF )

2

σ2F
+ 2 log σF , (6.19)

which is a proper scoring rule and is simple to compute. In the case of a Gaussian predictive

density function f(z), it can be shown that the DSS in (6.19) is equivalent to the so-called

logarithmic score (LS),
LS(F,Z) = − log f(Z), (6.20)

where f is the density function associated with F . This is one of the most-used proper scor-

ing rules in machine learning. Note that sometimes the LS is defined without the negative

sign (i.e., log f(Z)), in which case a larger score is better. We prefer to define it as in (6.20)

so that a smaller score is better, and as we show below in Section 6.4, this form of the LS is

often used when comparing models.

It can be quite useful to consider the skill (S) of a predictive model, which we define

here as the average of the scoring rule over a range of prediction cases. For pairs {(Fi, Zi) :
i = 1, . . . , N}, the skill is given by

S =
1

N

N∑

i=1

S(Fi, Zi), (6.21)

where S is a generic score function. We can use a skill score (SS) to compare predictions

from models to some reference prediction method. For example,

SSM =
SM − Sref

Sopt − Sref
, (6.22)

where SM, Sref , and Sopt represent the skill of the model M, the reference method, and a

hypothetical optimal predictor, respectively. The skill score (6.22) takes a maximum value

of 1 when the model M prediction is optimal, a value of 0 when the model M has skill

equivalent to the reference method, and a value less than 0 when the model M has lower

skill than the reference method. As noted by Gneiting and Raftery (2007), SSM is not

proper in general, even if the scoring rule used in its construction is proper.

R tip: Functions to compute the Brier score, the ranked probability score, the continu-

ous ranked probability score, and the logarithmic score can be found in the R package

verification.

Multivariate Scoring Rules

The scoring rules given above are univariate quantities that can be averaged or more gen-

erally summarized across time and space in our setting. Although less common, there are
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scoring rules that explicitly account for the multivariate nature of a multivariate prediction,

which can be important when there are dependencies in the process model (between vari-

ables in space or time). This addresses the iid caveat we put on the CRPS calculation in

(6.17) and (6.18), and it applies also to the skill defined by (6.21). For example, the scor-

ingRules R package implements the energy score (ES) discussed in Gneiting and Raftery

(2007), which is given by

ES(F,Z) = EF ||z− Z|| − 1

2
EF ||z− z′||, (6.23)

where, say, Z = (Z(si; tj): i = 1, . . . ,m; j = 1, . . . , T ), || · || represents the Euclidean

norm, and z and z′ are independent random vectors with multivariate cdf F . Notice from

comparison to (6.16) that (6.23) is a multivariate extension of the CRPS. Scheuerer and

Hamill (2015) state that numerous studies have shown that a good performance of this

score function requires a correct specification of the dependence structure in the model.

When only the first and second moments are of interest, an alternative is to consider the

multivariate version of the DSS given by (6.19), which we define as

DSSmv(F,Z) = log |CF |+ (Z− µF )
′C−1

F (Z− µF ), (6.24)

where µF = E(Z|data) and CF = var(Z|data) are the mean vector and covariance matrix

of the multivariate predictive cdf F .

Scheuerer and Hamill (2015) note that variograms (which, as we discuss in Chapter 4,

account for spatial and spatio-temporal dependence) consider the expected squared differ-

ence between observations, and they generalized this to define a multivariate score that they

call the variogram score of order p (V Sp). This can be written as

V Sp(F,Z) =
mT∑

i=1

mT∑

j=1

wij(|Zi − Zj |p − EF |zi − zj |p)2,

where wij are non-negative weights, and zi and zj are the ith and jth elements of a random

vector, z, from the multivariate cdf, F , and for ease of notation we write the data vector

as Z = (Z1, . . . , ZmT )
′. The weights can be used to de-emphasize certain difference pairs

(e.g., those that are farther apart) and p = 2 corresponds to the variogram defined in Chapter

4. In Lab 6.1, we illustrate the use of the ES and V Sp.

Technical Note 6.2: Proper Scoring Rules

This note follows the very intuitive description found in Bröcker and Smith (2007). Let

p(z) be a probability distribution of predictions of Z, which we wish to compare to an

observation Z with cdf F (i.e., we wish to validate our predictive model). Let a score be

some comparison measure between the predictive distribution and the observed value,
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denoted S(p, Z). Typically, scores are defined so that smaller scores indicate better

predictions. The score S is said to be proper if

EF {S(p, Z)} ≥ EF {S(q, Z)} (6.25)

for any two predictive distributions, p(z) and q(z), where q(z) is the “true” predictive

distribution. That is, (6.25) says that the expected score is minimized when the predictive

distribution coincides exactly with the true predictive distribution. The scoring rule is

strictly proper if this minimum in the expected score occurs only when p(z) = q(z) for

all z, that is, when the predictive distribution is the same as the true distribution. The

concept of propriety is very intuitive in that it formalizes the notion that if our predictive

distribution coincided with the true distribution, q(z), then it should be at least as good

as some other forecast distribution, p(z), not equal to q(z).

6.3.5 Field Comparison

A special case of validation concerns comparing spatial or spatio-temporal “fields.” The

idea of field comparison is to compare two or more spatial or spatio-temporal fields (typic-

ally gridded observations and/or model output, but note that they do not need to be gridded),

in some sense, to decide if they are “different.” This has been of interest for quite some

time in the geophysical sciences such as meteorology, where data and processes are natur-

ally dependent in space and time. As an example, assume we have a model that provides

short-term predictions (i.e., nowcasts) of precipitation, and we wish to validate our model’s

predictions with weather radar data by comparing the two fields. Field comparison can also

be used for inference where we would like to formally test whether two spatial fields are

significantly different. Many of the validation summaries and scoring rules discussed above

can be used in this context, although rigorous statistical inference has proved challenging.

For example, the MSPE, MAPE, RMSPE, and ACC measures are often used for field com-

parison. Further, some specialized summaries have been designed to compare spatial (and,

in principle, spatio-temporal) features of the process and data in these comparisons, and we

discuss a few of these below.

Field-Matching Methods

One of the biggest challenges in comparing spatial fields is to decide how well features

match up. For example, in the context of the aforementioned radar-nowcasting problem,

the goal might be to predict a feature (say, a storm cell) that is present in the observed radar

data, but the prediction might be shifted in space relative to the observations. Is such a

prediction better than if the prediction of the feature is not shifted, but covers an overly

broad area compared to the observed feature? Another issue is that the two fields may agree
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at some spatial scales of resolution, but not at others. One of the primary challenges in field

comparison is to account for differences in feature location, orientation, and scale.

When comparing two spatial fields of discrete outcomes, particularly in the context

of validating a predictive model, we can adapt many of the score functions to the spatial

case, beyond the simple averaging in a score function, where we try to account for the

different ways that spatial fields may match up. One of the most famous is the threat score

(TS) (also known as the critical success index). The TS is a simple summary that was

originally designed for 2 × 2 contingency tables. That is, it is the ratio of the number of

successful predictions of an event divided by the number of situations where that event was

predicted or observed, so notice that the number of correct predictions of the non-event is

not considered. In the context of field comparison, consider

TS =
A11

A11 +A10 +A01
, (6.26)

where A11 is the area associated with the intersection of the region where the predicted

event was expected to occur with the region where it did occur, A10 is the area where the

event was predicted to occur but did not occur, andA01 is the area where the event occurred

but was not predicted to occur.

For illustration, we consider the example in Lab 6.1 (Sydney radar data set), where

we leave out data in the 10-minute periods at 09:35 and 09:45, and then we predict the

reflectivities at these time points using both an IDE model and an FRK model with spatio-

temporal basis functions. When using the TS, we first need to identify the presence, or

otherwise, of an event, and we do this by setting a threshold parameter: an observation

or prediction greater than this threshold is classified as an event, while an observation or

prediction less than this threshold is classified as a non-event (in practice, we often compare

across multiple threshold values). Figure 6.8 shows the events and non-events in the data

and in the predictions from the two models at 09:35, for a threshold of 25 dBZ. Clearly,

the IDE model has been more successful in capturing “events” in this instance. The TSs

for both models for thresholds varying between 15 dBZ and 25 dBZ are given in Table 6.1:

we see that the IDE model outperforms the FRK models for all thresholds using this field-

matching diagnostic. Of course, kriging is not designed to predict events above a threshold

(e.g., Zhang et al., 2008), but neither is IDE prediction. Incorporating the dynamics appears

to carry extra advantages!

R tip: Check out the SpatialVx package for a comprehensive suite of field-matching

methods. In this example, we used the vxstats function from SpatialVx to obtain the

threat scores; this function also returns other useful diagnostics, such as the probability

of event detection and the false-alarm rate.
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Figure 6.8: Plots showing the presence or absence of events at 09:35, obtained by thresh-

olding the observations (left) or the IDE/FRK predictions (center and right) at 25 dBZ.

Table 6.1: Threat scores (TS) calculated using (6.26) for both the IDE predictions and the

FRK predictions at 09:35 for different thresholds.

Threshold (dBZ) TS for IDE TS for FRK

15.00 0.73 0.32

20.00 0.58 0.21

25.00 0.37 0.11

Field-matching approaches have attempted to deal with questions of scale decompo-

sitions and feature properties (location, orientation, phase, amplitude), and a summary of

such methods from a geophysical perspective can be found in Brown et al. (2012) and

Gilleland et al. (2010). A brief summary of field matching from a statistical perspective can

be found in Cressie and Wikle (2011, Section 5.7). In addition to using the MSPE, ACC,

and score functions, methods based on scale decomposition such as EOF-based diagnostics

(Branstator et al., 1993) and wavelet decompositions (Briggs and Levine, 1997) have been

used successfully for field matching. In these cases, the usual measures are applied to the

various scale components rather than to the full field. Examples of feature-based meth-

ods include the location-error matching approach of Ebert and McBride (2000) and the

morphometric decomposition into scale, location, rotation angle, and intensity differences

presented in Micheas et al. (2007).
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Field Significance

It has long been of interest in the geophysical sciences to ask whether the differences in two

spatial fields (or a collection of such fields) are significantly different. These two spatial

fields may correspond to predictions or observations. For example, is the average max-

imum temperature on a grid over North America for the decade 2001–2010 significantly

different from the corresponding average for the decade 1971–1980? One could consider

simple pointwise two-sample t tests for the hull hypothesis of mean differences equal to

zero at each grid cell. Then a Bonferroni correction of the level of significance, obtained

by dividing the desired level by the number of grid cells, could be applied to deal with the

multiple testing. However, such a correction leads to an overall test with very low power.

Alternatively, one could look at a map of corresponding p-values and qualitatively try to

identify regions in which a significant difference is present, which can be effective but

lacks rigor.

However, there is not only dependence in time that must be accounted for in any test that

considers a sequence of fields (e.g., the effective degrees of freedom would likely be less

than the number of time replicates in the presence of positive temporal dependence), but

one must also account for the spatial dependence between nearby tests when doing multiple

t tests. Historical approaches have attempted to deal with these issues through effective-

degrees-of-freedom modifications and Monte Carlo testing (see, for example, Livezey and

Chen, 1983; Stanford and Ziemke, 1994; Von Storch and Zwiers, 2002). More recently,

expanding on the famous false discovery rate (FDR) multiplicity mitigation approach of

Benjamini and Hochberg (1995), Shen et al. (2002) developed the so-called enhanced FDR

(EFDR) approach for spatial field comparison that uses the FDR methodology on a wavelet-

based scale decomposition of the spatial fields (which deals with the spatial dependence by

carrying out the testing on the decorrelated wavelet coefficients).

As an illustration, consider the difference between the mean SST anomalies in the 1970s

and in the 1990s for an area of the Pacific Ocean, as shown in the left panel of Figure 6.9.

Visually, it seems clear that the mean SST anomaly in the 1990s was higher than that of

the 1970s. However, to check which areas are significantly different, we can run the EFDR

procedure on this field of differences and then plot the field corresponding to the wavelets

whose coefficients are deemed to be significantly different from zero (at the 5% level).

The resulting “field significance” map, shown in the right panel of Figure 6.9, highlights

the regions that were significantly warmer or cooler in the 1990s. This procedure was

implemented using the EFDR R package.

6.4 Model Selection

It is often the case that diagnostic analysis of a model suggests that we consider an altern-

ative model, or that we should use fewer covariates in our regression model. This section

is concerned with the question of how to decide which model out of a group of models, say
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Figure 6.9: Left: Difference between the average SST anomalies in the 1990s and the

average SST anomalies in the 1970s. Right: The field significance map of SST anomaly

differences that were found to be significantly different from zero at the 5% level. The plot

is based on the EFDR procedure and was obtained using the package EFDR.

{M1, . . . ,ML}, is in some sense the “best.” We shall assume that all of the models under

consideration are reasonable from a scientific perspective, and so the choice is not obvious.

First, we note that any of the summaries or score functions discussed above could be used

to compare models, for example, using the skill score (6.22). In this section, we focus on

more traditional statistical-model-selection approaches, although our presentation is brief.

Interested readers can find more details in the excellent overviews of model comparison

presented in Gelman et al. (2014), Hooten and Hobbs (2015), and the references therein.

6.4.1 Model Averaging

From a predictive perspective, it may be the case that one obtains better predictions by aver-

aging over several models, rather than focusing on a single model. The formal methodology

for doing this is through Bayesian model averaging, which provides a probabilistically con-

sistent mechanism for combining posterior distributions (see Hoeting et al., 1999, for an

extensive overview). Our presentation follows the concise summary in Hooten and Hobbs

(2015).

Suppose we are interested in some vector quantity, g, which can be parameters or pre-

dictions of the process or the data, and suppose we have observations, Z, that were used to

train the model. Then, for ℓ ∈ {1, . . . , L}, we can write

[g|Z] =
L∑

ℓ=1

[g|Z,Mℓ]P (Mℓ|Z),

where [g|Z,Mℓ] is the posterior distribution of g given the data and the model Mℓ; and

P (Mℓ|Z) is the posterior probability of the model Mℓ which, given the data, gives the im-

portance of model Mℓ among the collection of models. We can obtain the latter distribution

from

P (Mℓ|Z) =
[Z|Mℓ]P (Mℓ)∑L
j=1[Z|Mj ]P (Mj)

, (6.27)

Wikle, C. K., Zammit-Mangion, A., and Cressie, N. (2019), Spatio-Temporal Statistics with R, Boca Raton,

FL: Chapman & Hall/CRC. © 2019 Wikle, Zammit-Mangion, Cressie. https://spacetimewithr.org



Model Selection 283

where the prior probabilities for the models, {P (Mj) : j = 1, . . . , L}, have been provided.

Often, all the models are assumed equally likely with a priori probability 1/L, but this

need not be the case. In (6.27), we also require the marginal data distribution for each

model (often called the integrated likelihood), [Z|Mℓ], which is simply the factor in the

denominator in Bayes’ rule when one is obtaining the posterior distribution under model

Mℓ. That is,

[Z|Mℓ] =

∫∫
[Z|Y,θ,Mℓ][Y|θ,Mℓ][θ|Mℓ]dYdθ, (6.28)

where [Z|Y,θ,Mℓ] is the data model (likelihood) under model Mℓ; and [Y|θ,Mℓ] and

[θ|Mℓ] are the process and prior distributions, respectively, under model Mℓ. Unfortu-

nately, (6.28) is typically intractable in BHM settings and cannot be calculated directly.

This makes Bayesian model averaging difficult to implement for complex models, although

there are various computational approaches used to obtain integrated likelihoods in this

setting and in the context of Bayes factors described in Section 6.4.2 (see, for example,

Congdon, 2006).

6.4.2 Model Comparison via Bayes Factors

The posterior probability for a given model expressed in (6.27) suggests a way to compare

models. In particular, we note that the ratio of two such posteriors (the posterior odds) can

be written as
p(Mℓ|Z)
p(Mk|Z)

=
[Z|Mℓ]P (Mℓ)

[Z|Mk]P (Mk)
≡ Bℓ,k(Z)

P (Mℓ)

P (Mk)
,

where the ratio of the integrated likelihoods, Bℓ,k(Z), is known as the Bayes factor. It

is a constant multiplier (that depends on the data) applied to the prior odds of model Mℓ

relative to model Mk. So, the larger Bℓ,k(Z) is, the more support there is for model Mℓ

relative to model Mk. Note that if we take the negative log of the Bayes factor, we obtain

the difference of two logarithmic scores (recall (6.20)); using obvious notation,

− logBℓ,k = LS(Fℓ;Z)− LS(Fk;Z).

6.4.3 Model Comparison via Validation

We can always compare models based on the validation measure that we think is most ap-

propriate for our problem. In this sense, any of the validation measures discussed above

might be considered. In spatio-temporal statistics, we most often use a measure of pre-

dictive accuracy and typically use an out-of-sample validation or, at least, some type of

cross-validation (e.g., using the MSPE or a proper scoring rule as a way to compare mod-

els). The logarithmic scoring rule (6.20) is often used in this context. Note that the log

predictive density is given by log[Zp|Z], where Zp corresponds to spatio-temporal data that

we would like to predict with our model, given data Z that were used to train the model.
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In the context of model selection, we should explicitly denote the model under which this

predictive distribution was obtained, namely, log[Zp|Z,Mℓ].
As stated previously, when the predictive distribution is Gaussian (which is often as-

sumed in S-T kriging models), it is described by the predictive means, variances, and co-

variances. Then the negative log predictive density is the LSmv score, which is just the

DSSmv score as we defined it in (6.24). More generally, in a BHM context, we can obtain

the logarithmic score by averaging over j = 1, . . . , N MCMC samples from the predic-

tive distribution. That is, up to Monte Carlo error, the log score based on the predictive

distribution [Zp|Z] can be obtained as follows:

LSp,ℓ = − log


 1

N

N∑

j=1

[Zp|Z,Y(j),θ(j),Mℓ]


 , ℓ = 1, . . . , L, (6.29)

where Y(j) and θ(j) correspond to the jth MCMC sample of the process and parameter

components in the ℓth model. Thus, we can compute (6.29) for multiple models, ℓ =
1, . . . , L, and use this to select the “best” model(s); with our definition of LS, we prefer

models with smaller values of LSp,ℓ.
As discussed above in Section 6.3.3, we often do not have a hold-out sample to use

for validation, so we turn to cross-validation. For example, the K-fold cross-validation

estimate of the LS based on the predictive distribution [Zk|Z(−k)] is (up to Monte Carlo

error)

LScv,ℓ = − 1

K

K∑

k=1

log


 1

N

N∑

j=1

[Zk|Z(−k),Y(j),θ(j),Mℓ]


 , ℓ = 1, . . . , L,

where Zk corresponds to the components of Z in the kth hold-out sample. The challenge for

many spatio-temporal BHMs is that it can be expensive to perform K-fold cross-validation

in the Bayesian setting, since the model has to be fitted K times. As an alternative, we

can evaluate the log predictive distribution using data from our training sample and then

attempt to correct for the bias associated with using the training sample for both model-

parameter estimation and prediction evaluation. The common bias correction methods are

often labeled information criteria and are discussed briefly in the next subsection.

6.4.4 Information Criteria

Information criteria work in much the same spirit as regularization approaches; that is, they

represent a trade-off between bias and variance in the sense that they penalize the bias due

to overfitting that can occur when models are evaluated on the same data that were used

to train them. This penalty controls for model complexity and favors models that are more

parsimonious (see, for example, the discussion in Hooten and Hobbs, 2015).
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Perhaps the most famous of the information criteria is the Akaike information criterion

(AIC). In this case, the parameters, θ, are assumed to be estimated using ML estimation,

and the AIC can be defined as

AIC(Mℓ) ≡ −2 log[Z|θ̂,Mℓ] + 2pℓ, (6.30)

where notice that − log[Z|θ̂,Mℓ] is the LS for model Mℓ, and parameter estimates θ̂

are ML estimates under model Mℓ (having integrated out the hidden process Y to yield

[Z|θ,Mℓ]). In (6.30), pℓ is the number of parameters estimated in model Mℓ (after inte-

grating out Y). Thus, the LS is penalized by the number of parameters in the model. When

comparing two models, the model with the lower AIC is better, which, all other things be-

ing equal, favors more parsimonious models. Despite integrating out the process Y, the

AIC breaks down when one has random effects and dependence in the model Mℓ, because

the number of effective parameters is not equal to pℓ. Although there are corrections to the

AIC that attempt to deal with some of these issues, one must be careful using them in these

settings (see, for example, the discussion in Hodges and Sargent, 2001; Overholser and Xu,

2014). In addition, the AIC is not an appropriate criterion for model selection between

different BHMs because it depends on ML estimates of parameters, and these parameters

have a prior distribution on them. There is no mechanism that we know of to account for

general prior distributions when using the AIC.

Another information criterion in common use is the Bayesian information criterion

(BIC). The BIC is given by

BIC(Mℓ) = −2 log[Z|θ̂,Mℓ] + log(m∗)pℓ, (6.31)

where m∗ is the sample size (i.e., the number of spatio-temporal observations) and, as with

the AIC, θ̂ is the ML estimate under Mℓ and pℓ is the number of parameters in the model

(with the same caveats as in the AIC case). As with the AIC, we prefer models with smaller

BIC values. Note that the BIC formula (6.31) gives larger penalties than the AIC (when

m∗ > 7) and so favors more parsimonious models than AIC. While it is referred to as a

“Bayesian” information criterion, it is likewise not appropriate for model selection between

different BHMs. Again the BIC relies on ML estimates of parameters and provides no way

to adjust the penalty term to account for the effective number of parameters in models with

random effects and dependence.

To account for the effective number of parameters in a BHM, Spiegelhalter et al. (2002)

proposed the deviance information criterion (DIC), given by

DIC(Mℓ) = −2 log[Z|E(θ|Z),Mℓ] + 2pDℓ , (6.32)

where E(θ|Z) is the posterior expectation of θ under model Mℓ, and pDℓ is the effective

number of parameters, given by

pDℓ ≡ Dℓ − D̂ℓ. (6.33)
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In (6.33), the estimated model deviance is D̂ℓ = −2 log[Z|E(θ|Z),Mℓ] as in (6.32), and

Dℓ is the posterior mean deviance, which is given by

Dℓ =

∫
−2 (log[Z|θ,Mℓ]) [θ|Z,Mℓ]dθ.

The DIC is fairly simple to calculate in MCMC implementations of BHMs, but it has several

well-known limitations, primarily related to the estimate of the effective number of param-

eters (6.33) and the fact that it is not appropriate for mixture models (see the summary in

Hooten and Hobbs, 2015). There are several alternative specifications in the literature that

attempt to overcome these limitations.

The Watanabe–Akaike information criterion (WAIC) attempts to address some of the

limitations of the DIC, and an elementwise (rather than multivariate) form can be written as

WAIC(Mℓ) = −2
m∗∑

i=1

log

(∫
[Zi|θ,Mℓ][θ|Z,Mℓ]dθ

)
+ 2pwℓ , (6.34)

where the effective number of parameters in (6.34) is given by

pwℓ =
m∗∑

i=1

varθ|Z(log[Zi|θ,Mℓ]). (6.35)

There are other ways to define the effective number of parameters in this setting, but Gelman

et al. (2014) favor (6.35) because it gives results more similar to LOOCV. Both components

of the WAIC can be easily evaluated using the samples from MCMC implementations of

BHMs (see, for example, Gelman et al., 2014; Hooten and Hobbs, 2015). The WAIC has

several advantages over the DIC for BHM selection (it averages using the posterior predic-

tive distribution of θ directly, rather than conditioning on a point estimate of the parameters;

it has a more realistic effective-number-of-parameters penalty; and it is appropriate both for

BHMs and Bayesian mixture models). However, we sound a warning note again in that the

elementwise implementation of the WAIC may not be appropriate for dependent processes

such as encountered in spatio-temporal modeling (see, for example, Gelman et al., 2014;

Hooten and Hobbs, 2015, for further discussion).

Hooten and Hobbs (2015) make the point that there is a similar model-selection ap-

proach that may be more appropriate for BHMs with dependent processes. In particular,

consider a special case of the so-called posterior predictive loss (PPL) approach described

by Laud and Ibrahim (1995) and Gelfand and Ghosh (1998). Define

PPL(Mℓ) =

m∗∑

i=1

(Zi − E(Zi|Z,Mℓ))
2 +

m∗∑

i=1

var(Zi|Z,Mℓ), (6.36)

where E(Zi|Z,Mℓ) and var(Zi|Z,Mℓ) are the predictive mean and predictive variance,

respectively, for the observation Zi. The PPL given by (6.36) shares with the usual in-

formation criteria a first term corresponding to the quality of prediction and a second term

penalizing models that are more complex.
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R tip: Several R packages used in this book contain functions that help compute or re-

turn information criteria from the fitted model. The functions AIC and BIC can be used

to extract the Akaike and Bayesian information criteria, respectively, from the models

discussed in Chapter 3 (linear models, generalized linear models, generalized additive

models), and the function inla in the package INLA may be instructed to compute

the deviance and Watanabe–Akaike information criteria. Other packages such as Spa-

tioTemporal, FRK, and IDE contain functions to compute the log-likelihood from the

fitted model, and then some of the information criteria above could be computed; see

Lab 6.1.

6.5 Chapter 6 Wrap-Up

The evaluation of a model through model checking, validation, and selection is a very im-

portant step in the model-building process. That said, it is worth making the point here

that in spatio-temporal modeling we often have a strong scientific motivation to consider

a specific model (e.g., a particular survey design or a particular physical or biological pro-

cess model). Cressie and Wikle (2011, Chapter 1) and Ver Hoef and Boveng (2015) make

the case that in these situations one should focus on building the best single model that

is possible rather than carrying out model selection from several models or implementing

multi-model inference. Indeed, as we have mentioned several times in this book, with ob-

servational data we never select the “true” model, but we can certainly build models that

allow us to learn about or predict the spatio-temporal process. This notion of “iterating on

a single model” (Ver Hoef and Boveng, 2015) may actually improve our ability to describe

the real-world processes of interest, as it allows us to focus more on model checking (diag-

nostics) and model validation, which may suggest new features of the data about which we

were unaware.

This chapter focused on model checking (Section 6.2), model validation (Section 6.3),

and model selection (Section 6.4). We discussed how it is difficult to evaluate what we

usually care about, the latent process, because we only have noisy and usually incompletely

sampled versions of it. Although an OSSE can be used in some cases to evaluate the model

with respect to the (simulated) true process of interest, we most often compare predictions

obtained from our predictive distribution to various validation data. We typically favor

validation data sets that are not used to train the model, and we can mimic such data through

cross-validation. We mentioned how there is often a challenge in matching the validation

sample with the prediction from our model, in terms of data support, although this was not a

topic we covered in detail. We gave some possible spatio-temporal extensions of regression

diagnostics and diagnostic plots that could be used for model checking, but we note that

this is quite an under-developed area of spatio-temporal statistics.
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Validation is the area of model evaluation that has seen the most activity in the spatio-

temporal literature, although most of these methods were not developed explicitly for

spatio-temporal processes. We are in favor of using proper scoring rules as validation

summaries, particularly those that account for the uncertainty included in the predictive

distribution. Model selection is a vast topic, and we just touched on some of the basic

approaches there. It is worth pointing out again that many of these methods are often not

appropriate in fully Bayesian contexts, or when one has dependent random effects. In that

sense, there is still a lot of work to be done in developing model-selection approaches for

complex spatio-temporal models.

Finally, as we have noted, spatio-temporal statistical models have primarily been used

for the purpose of prediction. Disciplines such as meteorology, which have had to develop,

improve, and justify predictive (forecast) models publicly on a daily basis for decades, have

developed a broader terminology to consider the efficacy of predictive models. In particular,

the late Alan Murphy was a pioneer in the formal study of predictive-model performance.

In a classic paper, Murphy (1993) gave a list of nine “attributes” to consider when trying to

describe the quality of a forecast: bias, association, accuracy, skill, reliability, resolution,

sharpness, discrimination, and uncertainty. In general, his attributes describe three primary

aspects of a good prediction: consistency, quality, and value. Consistency refers to how

closely the prediction corresponds to the modeler’s prior beliefs or judgement, given his/her

understanding of the process and the data; quality corresponds to how well the prediction

agrees with observations; and value simply considers if the prediction actually contributes

to beneficial decision-making.1 In statistics, we should consider these issues too, but our

subject has primarily focused on bias and accuracy. These other issues are important, and

this area offers a wonderful opportunity for researchers to build up this under-developed

area in spatio-temporal statistics.

After going through the following Lab, you are invited to go on to the epilogical chapter

for some closing remarks about spatio-temporal statistics.

1See the overview at http://www.cawcr.gov.au/projects/verification/
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Lab 6.1: Spatio-Temporal Model Validation

In this Lab we consider the validation of two spatio-temporal models that are fitted to the

same data set. To show the importance of modeling dynamics, we shall consider the Syd-

ney radar data set and compare predictions obtained using the IDE model to those obtained

using the FRK model (which does not incorporate dynamics). We shall carry out validation

on data that are held out. The hold-out data set will comprise (i) a block of data spanning

two time points, and (ii) a 10% random sample of the data at the other time points. We ex-

pect the IDE model to perform particularly well when validating the block of data spanning

two points, where information on the dynamics is pivotal for “filling in” the temporal gaps.
For this Lab we use the IDE and FRK packages for modeling,

library("FRK")

library("IDE")

the scoringRules and verification packages for probabilistic validation,

library("scoringRules")

library("verification")

and the usual packages for handling and plotting spatio-temporal data,

library("dplyr")

library("ggplot2")

library("sp")

library("spacetime")

library("STRbook")

library("tidyr")

Step 1: Training and Validation Data

First, we load the Sydney radar data set and create a new field timeHM that contains the

time in an hours:minutes format.

data("radar_STIDF", package = "STRbook")

mtot <- length(radar_STIDF)

radar_STIDF$timeHM <- format(time(radar_STIDF), "%H:%M")

The initial stage of model verification is to hold out data prior to fitting the model, so that

these data can be compared to the predictions once the model is fitted on the retained data.

As explained above, we first leave out data at two time points, namely 09:35 and 09:45, by

finding the indices of the observations that were made at these times, and then removing

them from the complete set of observation indices.
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valblock_idx <- which(radar_STIDF$timeHM %in% c("09:35",

"09:45"))

obs_idx <- setdiff(1:mtot, valblock_idx)

We next leave out 10% of the data at the other time points by randomly sampling 10% of

the elements from the remaining observation indices.

set.seed(1)

valrandom_idx <- sample(obs_idx,

0.1 * length(obs_idx),

replace = FALSE) %>% sort()

obs_idx <- setdiff(obs_idx, valrandom_idx)

We can now use the indices we have generated above to construct our training data set, a

validation data set for the missing time points, and a validation data set corresponding to

the data missing at random from the other time points.

radar_obs <- radar_STIDF[obs_idx, ]

radar_valblock <- radar_STIDF[valblock_idx, ]

radar_valrandom <- radar_STIDF[valrandom_idx, ]

Step 2: Fitting the IDE Model

In Lab 5.2 we fitted the IDE model to the entire data set. Here, instead, we fit the IDE

model to the training data set created above. As before, since this computation takes a long

time, we can load the results directly from cache.

IDEmodel <- IDE(f = z ~ 1,

data = radar_obs,

dt = as.difftime(10, units = "mins"),

grid_size = 41)

fit_results_radar2 <- fit.IDE(IDEmodel,

parallelType = 1)

data("IDE_Radar_results2", package = "STRbook")

It is instructive to compare the estimated parameters from the full data set in Lab 5.2 to

the estimated parameters from the training data set in this Lab. Reassuringly, we see that

the intercept, the kernel parameters (which govern the system dynamics), as well as the

variance parameters, have similar estimates.
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## load results with full data set

data("IDE_Radar_results", package = "STRbook")

with(fit_results_radar$IDEmodel, c(get("betahat")[1,1],

unlist(get("k")),

get("sigma2_eps"),

get("sigma2_eta")))

## par1 par2 par3 par4 par5 par6

## 0.582 0.135 2.497 -5.488 -1.861 28.384 7.271

with(fit_results_radar2$IDEmodel, c(get("betahat")[1,1],

unlist(get("k")),

get("sigma2_eps"),

get("sigma2_eta")))

## par1 par2 par3 par4 par5 par6

## 0.5735 0.0909 3.6784 -5.2067 -1.8174 28.8660 10.1376

Prediction proceeds with the function predict. Since we wish to predict at specific

locations we now use the argument newdata to indicate where and when the predictions

need to be made. In this case we supply newdata with the STIDF objects we constructed

above.

pred_IDE_block <- predict(fit_results_radar2$IDEmodel,

newdata = radar_valblock)

pred_IDE_random <- predict(fit_results_radar2$IDEmodel,

newdata = radar_valrandom)

Step 3: Fitting the FRK Model

For FRK we need to specify the spatial basis functions and temporal basis functions in order

to construct the spatio-temporal basis functions. For the spatial basis functions we specify

two resolutions of bisquare functions regularly distributed inside the domain.

G_spatial <- auto_basis(manifold = plane(), # fns on plane

data = radar_obs, # project

nres = 2, # 2 res.

type = "bisquare", # bisquare.

regular = 1) # irregular

Type show_basis(G_spatial) to visualize the locations and apertures of these ba-

sis functions. For the temporal basis functions we regularly place five bisquare functions

between 0 and 12 with an aperture of 3.5.
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t_grid <- matrix(seq(0, 12, length = 5))

G_temporal <- local_basis(manifold = real_line(), # fns on R1

type = "bisquare", # bisquare

loc = t_grid, # centroids

scale = rep(3.5, 5)) # aperture par.

Type show_basis(G_temporal) to visualize these basis functions. Finally, we con-

struct the spatio-temporal basis functions by taking their tensor product.

G <- TensorP(G_spatial, G_temporal) # take the tensor product

Next we construct the BAUs. These are regularly placed space-time cubes covering

our spatio-temporal domain. The cellsize we choose below is one that is similar to

that which the IDE function constructed when specifying grid_size = 41 above. We

impose a convex hull as a boundary that is tight around the data points, and not extended.

BAUs <- auto_BAUs(manifold = STplane(), # ST field on plane

type = "grid", # gridded (not "hex")

data = radar_obs, # data

cellsize = c(1.65, 2.38, 10), # BAU cell size

nonconvex_hull = FALSE, # convex boundary

convex = 0, # no hull extension

tunit = "mins") # time unit is "mins"

BAUs$fs = 1 # fs variation prop. to 1

As we did in Lab 4.2, we can take the measurement error to be that estimated elsewhere,

in this case by the IDE model. Any remaining residual variation is then attributed to fine-

scale variation that is modeled as white noise. Attribution of variation is less critical when

validating against observational data, since the total variance is used when constructing

prediction intervals.

sigma2_eps <- fit_results_radar2$IDEmodel$get("sigma2_eps")

radar_obs$std <- sqrt(sigma2_eps)

The function FRK is now called to fit the random-effects model using the chosen basis

functions and BAUs.

S <- FRK(f = z ~ 1,

BAUs = BAUs,

data = list(radar_obs), # (list of) data

basis = G, # basis functions

n_EM = 2, # max. no. of EM iterations

tol = 0.01) # tol. on log-likelihood
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Prediction proceeds using the predict function.

FRK_pred <- predict(S)

Since predict predicts over the BAUs, we need to associate each observation in our

validation STIDFs to a BAU cell. This can be done simply using the function over. In the

code below, the data frames df_block_over and df_random_over are data frames

containing the predictions and prediction standard errors at the validation locations.

df_block_over <- over(radar_valblock, FRK_pred)

df_random_over <- over(radar_valrandom, FRK_pred)

Step 4: Organizing Predictions for Further Analysis

Having obtained our predictions and prediction standard errors from the two models, the

next step is to combine them into one data frame. We take the hold-out STIDF from the

two time points, convert it to a data frame, and then put in the FRK and IDE predictions,

prediction standard errors on the process, and the prediction standard errors in observation

space. We distinguish between the latter two by using the labels predse and predZse,

respectively.

radar_valblock_df <- radar_valblock %>%

data.frame() %>%

mutate(FRK_pred = df_block_over$mu,

FRK_predse = df_block_over$sd,

FRK_predZse = sqrt(FRK_predse^2 +

sigma2_eps),

IDE_pred = pred_IDE_block$Ypred,

IDE_predse = pred_IDE_block$Ypredse,

IDE_predZse = sqrt(IDE_predse^2 +

sigma2_eps))

For plotting purposes, it is also convenient to construct a data frame in long format, where

all the predictions are put into the same column, and a second column identifies to which

model the prediction corresponds.

radar_valblock_df_long <- radar_valblock_df %>%

dplyr::select(s1, s2, timeHM, z,

FRK_pred, IDE_pred) %>%

gather(type, num, FRK_pred, IDE_pred)

Construction of radar_valrandom_df and radar_valrandom_df_long pro-

ceeds in identical fashion to the code given above (with block replaced with random)

and is thus omitted.
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Step 5: Scoring

Now we have everything in place to start analyzing the prediction errors. We start by simply

plotting histograms of the prediction errors to get an initial feel of the distributions of these

errors from the two models. As before, we only show the code for the left-out data in

radar_valblock_df_long.

ggplot(radar_valblock_df_long) +

geom_histogram(aes(z - num, fill = type),

binwidth = 2, position = "identity",

alpha = 0.4, colour = 'black') + theme_bw()

Figure 6.2 shows the resulting distributions. They are relatively similar; however, a close

look reveals that the errors from the FRK model have a slightly larger spread, especially

for the data at the missing time points. This is a first indication that FRK, and the lack of

consideration of dynamics, will be at a disadvantage when predicting the process across

time points for which we have no data.

We next look at the correlation between the predictions and the observations, plotted

below and shown in Figure 6.10. Again, there does not seem to be much of a difference in

the distribution of the errors between the two models when the data are missing at random,

but there is a noticeable difference when the data are missing for entire time points. In fact,

the correlation between the predictions and observations for the FRK model is, in this case,

0.708, while that for the IDE model is 0.848.

ggplot(radar_valblock_df) + geom_point(aes(z, FRK_pred))

ggplot(radar_valblock_df) + geom_point(aes(z, IDE_pred))

It is interesting to see the effect of the absence of time points on the quality of the

predictions. To this end, we can create a new data frame, which combines the validation

data and the predictions, and compute the mean-squared prediction error (MSPE) for each

time point.

MSPE_time <- rbind(radar_valrandom_df_long,

radar_valblock_df_long) %>%

group_by(timeHM, type) %>%

dplyr::summarise(MSPE = mean((z - num)^2))

The following code plots the evolution of the MSPE as a function of time.

ggplot(MSPE_time) +

geom_line(aes(timeHM, MSPE, colour = type, group = type))

The evolution of the MSPE is shown in Figure 6.11, together with vertical dashed lines

indicating the time points that were left out when fitting and predicting. It is remarkable to
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Figure 6.10: Scatter plots of the observations and predictions for the FRK model (red) and

the IDE model (blue), when the data are missing for entire time points (left) and at random

(right).

note how spatio-temporal FRK, due to its simple descriptive nature, suffers considerably,

with an MSPE that is nearly twice that of the IDE model. Note that predictions close to this

gap are also severely compromised. The IDE model is virtually unaffected by the missing

data, as the trained dynamics are sufficiently informative to describe the evolution of the

process at unobserved time points. At time points away from this gap, the MSPEs of the

FRK and IDE models are comparable.

The importance of dynamics can be further highlighted by mapping the prediction

standard errors at each time point. The plot in Figure 6.12, for which the commands are

given below, reveals vastly constrasting spatial structures between the FRK prediction stan-

dard errors and the IDE prediction standard errors. Note that at other time points (we only

show six adjoining time points) the prediction standard errors given by the two models are

comparable.

ggplot(rbind(radar_valrandom_df_long, radar_valblock_df_long)) +

geom_tile(aes(s1, s2, fill= z - num)) +
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Figure 6.11: MSPE of the FRK predictions (red) and the IDE predictions (blue) as a func-

tion of time. The dotted black lines mark the times where no data were available for fitting

or predicting.

facet_grid(type ~ timeHM) + coord_fixed() +

fill_scale(name = "dBZ") +

theme_bw()

Next, we compute some of the cross-validation diagnostics. We consider the bias, the

predictive cross-validation (PCV) and the standardized cross-validation (SCV) measures,

and the continuous ranked probability score (CRPS). Functions for the first three are simple

enough to code from scratch.

Bias <- function(x,y) mean(x - y) # x: val. obs.

PCV <- function(x,y) mean((x - y)^2) # y: predictions

SCV <- function(x,y,v) mean((x - y)^2 / v) # v: pred. variances

The last one, CRPS, is a bit more tedious to implement, but it is available through the crps

function of the verification package. The function crps returns, among other things, a

field CRPS containing the average CRPS across all validation observations.

## Compute CRPS. s is the pred. standard error

CRPS <- function(x, y, s) verification::crps(x, cbind(y, s))$CRPS

Finally, we compute the diagnostics for each of the FRK and IDE models. In the code

below, we show how to obtain them for the validation data at the missing time points; those
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Figure 6.12: Spatial maps of prediction standard errors at the validation-data locations for

the two missing time points and the adjoining six time points, based on the FRK model (top

row) and the IDE model (bottom row).

for the validation data that are missing at random are obtained in a similar fashion. The

diagnostics are summarized in Table 6.2, where it is clear that the IDE model outperforms

the FRK model on most of the diagnostics considered here (note, in particular, the PCV

for data associated with missing time points). For both models, we note that the SCV and

CRPS need to be treated with care in a spatial or spatio-temporal setting, since the errors do

exhibit some correlation, which is not taken into account when computing these measures.

Diagblock <- radar_valblock_df %>% summarise(

Bias_FRK = Bias(FRK_pred, z),

Bias_IDE = Bias(IDE_pred, z),

PCV_FRK = PCV(FRK_pred, z),

PCV_IDE = PCV(IDE_pred, z),

SCV_FRK = SCV(FRK_pred, z, FRK_predZse^2),

SCV_IDE = SCV(IDE_pred, z, IDE_predZse^2),

CRPS_FRK = CRPS(z, FRK_pred, FRK_predZse),

CRPS_IDE = CRPS(z, IDE_pred, IDE_predZse)

)

The multivariate energy score (ES) and variogram score of order p (V Sp) are available

in R in the scoringRules package. The two functions we shall be using are es_sample

and vs_sample. However, to compute these scores, we first need to simulate forecasts
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Table 6.2: Cross-validation diagnostics for the FRK and IDE models fitted to the Sydney

radar data set on data that are left out for two entire time intervals (top row) and at random

(bottom row). The IDE model fares better for most diagnostics considered here, namely the

bias (closer to zero is better), the predictive cross-validation measure (PCV, lower is better),

the standardized cross-validation measure (SCV, closer to 1 is better), and the continuous

ranked probability score (CRPS, lower is better)

Bias PCV SCV CRPS

FRK IDE FRK IDE FRK IDE FRK IDE

Missing time points -0.36 0.61 51.98 29.54 1.37 0.56 3.78 3.02

Missing at random -0.16 0.02 34.48 27.94 0.79 0.91 3.13 2.76

from the predictive distribution. To do this, we not only need the marginal prediction vari-

ances, but also all the prediction covariances. Due to the size of the prediction covariance

matrices, multivariate scoring can only be done on at most a few thousand predictions at a

time.

For this part of the Lab, we consider the validation data at 09:35 from the Sydney radar

data set.

radar_val0935 <- subset(radar_valblock,

radar_valblock$timeHM == "09:35")

n_0935 <- length(radar_val0935) # number of validation data

To predict with the IDE model and store the covariances, we simply set the argument

covariances to TRUE.

pred_IDE_block <- predict(fit_results_radar2$IDEmodel,

newdata = radar_val0935,

covariances = TRUE)

To predict with the FRK model and store the covariances, we also set the argument

covariances to TRUE.

FRK_pred_block <- predict(S,

newdata = radar_val0935,

covariances = TRUE)

The returned objects are lists that contain the predictions in the item newdata and the

covariances in an item Cov. Now, both es_sample and vs_sample are designed to

compare a sample of forecasts to data, and therefore we need to simulate some realizations

from the predictive distribution before calling these functions.
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Recalling Lab 5.1, one of the easiest ways to simulate from a Gaussian random vector

x with mean µ and covariance matrix Σ is to compute the lower Cholesky factor of Σ, call

this L, and then to compute

Zsim = µ+ Le,

where e ∼ iid Gau(0, I). In our case, µ contains the estimated intercept plus the predic-

tions, while L is the lower Cholesky factor of whatever covariance matrix was returned in

Cov with the measurement-error variance, σ2ǫ , added onto the diagonal (since we are val-

idating against observations, and not process values). Recall that we have set σ2ǫ to be the

same for the FRK and the IDE models.

Veps <- diag(rep(sigma2_eps, n_0935))

Now the Cholesky factors of the predictive covariance matrices for the IDE and FRK models

are given by the following commands.

L_IDE <- t(chol(pred_IDE_block$Cov + Veps))

L_FRK <- t(chol(FRK_pred_block$Cov + Veps))

The intercepts estimated by both models are given by the following commands.

IntIDE <- coef(fit_results_radar2$IDEmodel)

IntFRK <- coef(S)

We can generate 100 simulations at once by adding on the mean component (intercept plus

prediction) to 100 realizations simulated using the Cholesky factor as follows.

nsim <- 100

E <- matrix(rnorm(n_0935*nsim), n_0935, nsim)

Sims_IDE <- IntIDE + pred_IDE_block$newdata$Ypred + L_IDE %*% E

Sims_FRK <- IntFRK + FRK_pred_block$newdata$mu + L_FRK %*% E

In Figure 6.13 we show one of the simulations for both the FRK and the IDE model,

together with the validation data, at time point 09:35. Note how the IDE model is able to

capture more structure in the predictions than the FRK model.

## Put into long format

radar_val0935_long <- cbind(data.frame(radar_val0935),

IDE = Sims_IDE[,1],

FRK = Sims_FRK[,1]) %>%

gather(type, val, z, FRK, IDE)

## Plot

gsims <- ggplot(radar_val0935_long) +

geom_tile(aes(s1, s2, fill = val)) +

facet_grid(~ type) + theme_bw() + coord_fixed() +

fill_scale(name = "dBZ")
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Figure 6.13: One of the 100 simulations from the predictive distribution of the FRK model

(left) and the IDE model (center), and the data (not used to train the model, right) at 09:35.

We now compute the ES for both models by supplying the data and the simulations in

matrix form to es_sample.

es_sample(radar_val0935$z, dat = as.matrix(Sims_IDE))

## [1] 145

es_sample(radar_val0935$z, dat = as.matrix(Sims_FRK))

## [1] 208

As with all proper scoring rules, lower is better, and we clearly see in this case that the

IDE model has a lower ES than that for the FRK model for these validation data. For

V Sp, we also need to specify weights. Here we follow the example given in the help file

of vs_sample and set wij = 0.5dij , where dij is the distance between the ith and jth
prediction locations.

distances <- radar_val0935 %>%

coordinates() %>%

dist() %>%

as.matrix()

weights <- 0.5^distances

The function vs_sample is then called in a similar way to es_sample, but this time

specifying the weights and the order (we chose p = 1).
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vs_sample(radar_val0935$z, dat = as.matrix(Sims_IDE),

w = weights, p = 1)

## [1] 67423

vs_sample(radar_val0935$z, dat = as.matrix(Sims_FRK),

w = weights, p = 1)

## [1] 79028

As expected, we find that the IDE model has a lower V S1 than the FRK model. Thus, the

IDE model in this case has provided better probabilistic predictions than the FRK model,

both marginally and jointly.

Step 6: Model Comparison

We conclude this Lab by evaluating the Akaike information criterion (AIC) and Bayesian

information criterion (BIC) for the two models. Recall that the AIC and BIC of a model

Mℓ with pl parameters estimated with m∗ data points are given by

AIC(Mℓ) = −2 log p(Z|θ̂,Mℓ) + 2pl,

BIC(Mℓ) = −2 log p(Z|θ̂,Mℓ) + log(m∗)pl.

For both AIC and BIC, we need the log-likelihood of the model at the estimated parameters.

For the models we consider, these can be extracted using the function loglik in FRK and

the negative of the function negloglik supplied with the IDE object.

loglikFRK <- FRK:::loglik(S)

loglikIDE <- -fit_results_radar2$IDEmodel$negloglik()

Before we can compute the AIC and BIC for our models, we first need to find out how

many parameters were estimated. For the IDE model, the intercept, two variance parameters

(one for measurement error and one for the temporal invariant disturbance term) and four

kernel parameters were estimated, for a total of seven parameters. For the FRK model, the

intercept, four variance parameters (one for measurement error, one for fine-scale variation,

and one for each resolution of the basis functions) and four length-scale parameters (one

spatial and one temporal length-scale for each resolution) were estimated, for a total of nine

parameters.

pIDE <- 7

pFRK <- 9

The total number of data points used to fit the two models is
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m <- length(radar_obs)

We now find the AIC and BIC for both models.

## Initialize table

Criteria <- data.frame(AIC = c(0, 0), BIC = c(0, 0),

row.names = c("FRK", "IDE"))

## Compute criteria

Criteria["FRK", "AIC"] <- -2*loglikFRK + 2*pFRK

Criteria["IDE", "AIC"] <- -2*loglikIDE + 2*pIDE

Criteria["FRK", "BIC"] <- -2*loglikFRK + pFRK*log(m)

Criteria["IDE", "BIC"] <- -2*loglikIDE + pIDE*log(m)

Criteria

## AIC BIC

## FRK 65980 66045

## IDE 45701 45751

Both the AIC and BIC are much smaller for the IDE model than for the FRK model.

When the difference in the criteria is so large (in this case around 10,000), it safe to con-

clude that one model is a much better representation of the data. Combined with the other

visualizations and diagnostics, we can conclude that the IDE model is preferrable to the

FRK model for modeling and predicting with the Sydney radar data set.

As a final note, as discussed in Section 6.4.4, the AIC and BIC are not really appropriate

for model selection in the presence of dependent random effects as the effective number of

parameters in such settings is more than the number of parameters describing the fixed ef-

fects and covariance functions, and less than this number plus the number of basis-function

coefficients (due to dependence; e.g., Hodges and Sargent, 2001; Overholser and Xu, 2014).

Excluding the number of basis functions (i.e., the number of random effects) when com-

puting the AIC and BIC clearly results in optimistic criteria; other measures such as the

conditional AIC (e.g., Overholser and Xu, 2014) or the DIC, WAIC, and PPL are more

suitable for such problems (see Section 6.4.4).
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Pergimus (Epilogue)

These are our last words in the book, but that doesn’t mean this is the end. This epilogical

chapter’s title is meant to convey an open-endedness to our project. Our Latin sources tell

us that pergimus means “let’s go forward” or “let’s continue to progress,” derived from the

verb pergere. Here’s an opportunity for you, the reader, to move beyond the previous six

chapters and develop your own statistical approaches to the analysis of spatio-temporal data.

You now have a sense for the motivations, main concepts, and practicalities behind spatio-

temporal statistics, and the R Labs have given you an important “hands-on” perspective.

We hope you’ve seen enough to want more than what is in our book. A stepping-

off point for more theory and methods might be in the pages of Chapters 6–9 of Cressie

and Wikle (2011); and you can find more and more applications in the literature, most

recently where the spatio-temporal models fitted are non-Gaussian, nonlinear, and multi-

variate. We expect that by the time our book comes out, new applications and software for

spatio-temporal statistics will have appeared, and we hope you’ll be motivated yourself to

contribute.

We’ve tried to emphasize that spatio-temporal data are ubiquitous in the real, complex,

messy world, and making sense of them depends on accounting for spatio-temporal de-

pendencies. In the past, it’s been difficult to handle the complexity of such data, the hidden

processes behind them, and the sheer size of many of the data sets. Yet the principles of

good statistical practice still apply – they’re just a bit more involved! We should still explore

our data through visualization and quantitative summaries; we should still try to build par-

simonious models; we should add complexity to our models only when necessary; and we

still need to evaluate our inferences through simulation and (cross-)validation. Then, after

making all necessary modifications to the model, we go through the modeling–evaluation

cycle again!

There are several challenges that are particular to spatio-temporal statistics. The ob-

vious one is how to accommodate the complex dependencies that are typically present in

spatio-temporal data. This is often exacerbated by the curse of dimensionality – that is, we

may have a lot of data and/or are interested in predicting at a lot of locations in space and

time. It’s often worse when we’re data-rich in one of the dimensions (e.g., space) but data-

poor in the other (e.g., time, or vice versa). These challenges can be met by focusing on

parsimonious parameterizations, for example when parameterizing spatio-temporal covari-
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ance functions in the descriptive approach or propagator matrices in the dynamic approach.

In the latter case, using mechanistic processes to motivate parsimonious dynamic models

has proven very useful.

In both cases, a very effective strategy is to treat scientifically interpretable parameters

as random processes (e.g., spatial stochastic processes) at a lower level in a hierarchical

statistical model. We’ve also seen that if we’re not careful about how our models are para-

meterized, we can run into serious computational roadblocks. One of the most helpful

solutions comes through basis-function expansions, where the modeling effort is typically

redirected towards specifying multivariate-time-series models for the random coefficients

of the basis functions.

Finally, we’ve presented some approaches to model evaluation (checking, validation,

and selection) for models fitted to spatio-temporal data. However, this is very much an open

area of research, and there’s no “one way” to go about it. Nor should there be: using the

analogy of a medical professional trying to evaluate a patient’s health status, such evaluation

comes from running a battery of diagnostics.

We’ve entered an interesting time where statistical applications are increasingly using

machine-learning methods to answer all sorts of questions. All the rage at the time of writ-

ing are “deep learning” methods based on deep models, which are quite complicated but,

as noted earlier, essentially hierarchical. Statistical and machine-learning versions of these

models share many things in common, such as requiring a lot of training data and prior

information, substantial regularization (smoothing), and high-performance computing. The

biggest difference to date is that machine-learning methods don’t always provide estimates

of uncertainty or account for uncertainties in inputs and outputs. In the near future, we

expect there will be substantially more cross-fertilization between these two paradigms,

leading to new avenues of research and development in spatio-temporal modeling. This is

an interesting and exciting place to be, at the intersection of statistics and the data-oriented

disciplines in science, technology, engineering, and mathematics (STEM) that loosely de-

fine “data science.”

We believe that the statistical methods presented in this book provide a good practical

foundation for much of spatio-temporal statistics, although there are many things that we

didn’t cover – not because they are less important, but mainly because of space and time

limitations (pun intended!). For example, some of the topics on our “should’ve but didn’t”

list are:

• spatio-temporal point processes

• spatio-temporal random sets

• continuous-time spatio-temporal processes

• spatio-temporal extremes

• multivariate spatio-temporal processes

• spatio-temporal design of sampling networks

• spatio-temporal change-of-support (resolution, alignment, scale)
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• small-area panel data from surveys

• more details on estimation, computation, and implementation (especially in “big

data” situations)

• more R examples of Bayesian spatio-temporal statistical analyses.

It’s time to take a break, but let’s continue to progress . . . and we invite you to

share your progress and check up on ours through the book’s website: https://

spacetimewithr.org.
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Appendices

A Some Useful Matrix-Algebra Definitions and Properties

For the sake of completeness, we provide some definitions and properties of vectors and

matrices that are needed to understand many of the formulas and equations in this book.

Readers who are already familiar with matrix algebra can skip this section. Readers who

would like more detail than the bare minimum presented here can find them in books on

matrix algebra or multivariate statistics (e.g., Johnson and Wichern, 1992; Schott, 2017).

Vectors and matrices. In this book we denote a vector (a column of numbers) by a

bold letter (Latin or Greek); for example,

a =




a1
a2
...

ap




represents a p-dimensional vector, and a′ = [a1, a2, . . . , ap] or (a1, a2, . . . , ap) is its p-

dimensional transpose.

We also denote a matrix (an array of numbers) by bold upper-case letters (Latin or

Greek); for example,

A =




a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...

ap1 ap2 · · · apn




is a p × n matrix, and akℓ corresponds to the element in the kth row and ℓth column;

sometimes it is also written as {akℓ}. The matrix transpose, A′, is then an n × p matrix

given by

A′ =




a11 a21 · · · ap1
a12 a22 · · · ap2

...
...

...

a1n a2n · · · apn


 .
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We often consider a special matrix known as the identity matrix, denoted In, which is

an n× n diagonal matrix with ones along the main diagonal (i.e., aii = 1 for i = 1, . . . , n)

and zeros for all of the off-diagonal elements (i.e., aij = 0, for i 6= j). It is sometimes the

case that the dimensional subscript (in this case, n) is left off if the context is clear.

Finally, note that a vector can be thought of as a special case of a p × n matrix, where

either p = 1 or n = 1.

Matrix addition. Matrix addition is defined for two matrices that have the same dimen-

sion. Then, given p×n matrices A and B, with elements {akℓ} and {bkℓ} for k = 1, . . . , p
and ℓ = 1, . . . , n, respectively, the elements of the matrix sum, C = {ckℓ} = A +B, are

given by

ckℓ = akℓ + bkℓ, k = 1, . . . , p; ℓ = 1, . . . , n.

Scalar multiplication. Consider an arbitrary scalar, c, and the p× n matrix A. Scalar

multiplication by a matrix then gives a new matrix in which each element of the matrix A

is multiplied individually by the scalar c. Specifically, cA = Ac = G, where each element

of G = {gkℓ} is given by gkℓ = cakℓ, for k = 1, . . . , p and ℓ = 1, . . . , n.

Matrix subtraction. As with matrix addition, matrix subtraction is defined for two

matrices that have the same dimension. Consider the two p × n matrices A and B, with

elements {akℓ} and {bkℓ}, for k = 1, . . . , p and ℓ = 1, . . . , n, respectively. The matrix

difference between A and B is then given by

C = {ckℓ} = A−B = A+ (−1)B,

where it can be seen that the elements of C are given by ckℓ = akℓ − bkℓ, for k = 1, . . . , p
and ℓ = 1, . . . , n. Thus, matrix subtraction is just a combination of matrix addition and

scalar multiplication (by −1).

Matrix multiplication. The product of the p × n matrix A and n × m matrix B is

given by the p×m matrix C, where C = {ckj} = AB, with

ckj =
n∑

ℓ=1

akℓbℓj , k = 1, . . . , p; j = 1, . . . ,m.

Thus, for the matrix product AB to exist, the number of columns in A must equal the

number of rows in B; so C always has the number of rows that are in A and the number of

columns that are in B.

Orthogonal matrix. A square p × p matrix A is said to be orthogonal if AA′ =
A′A = Ip.

Vector inner product. As a special case of matrix multiplication, consider two vectors,

a and b, both of length p. The inner product of a and b is given by the scalar a′b = b′a ≡∑p
k=1 akbk.
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Vector outer product. For another special case of matrix multiplication, consider a

p-dimensional vector a and a q-dimensional vector b. The outer product ab′ is given by

the p× q matrix

ab′ ≡




a1b1 a1b2 · · · a1bq
a2b1 a2b2 · · · a2bq

...
...

...

apb1 apb2 · · · apbq


 .

Note that (in general) ab′ 6= b′a.

Kronecker product. Consider two matrices, an na ×ma matrix, A, and an nb ×mb

matrix, B. The Kronecker product of A and B is given by the nanb×mamb matrix A⊗B

defined as

A⊗B ≡




a11B · · · a1maB
...

...
...

ana1B · · · anamaB


 .

If A is na × na and B is nb × nb, the inverse and determinant of the Kronecker product

can be expressed in terms of the Kronecker product of the inverses and determinants of the

individual matrices, respectively:

(A⊗B)−1 = A−1 ⊗B−1,

|A⊗B| = |A|nb |B|na .

Euclidean norm. Consider the p-dimensional real-valued vector a = [a1, a2, . . . , ap]
′.

The Euclidean norm is simply the Euclidean distance in p-dimensional space, given by

||a|| ≡
√
a′a ≡

√√√√
p∑

k=1

a2k.

Symmetric matrix. A matrix A is said to be symmetric if A′ = A.

Diagonal matrix. Consider the p × p matrix A. The (main) diagonal elements of this

matrix are given by the vector [a11, a22, . . . , app]
′. Sometimes it is helpful to use a shorthand

notation to construct a matrix with specific elements of a vector on the main diagonal and

zeros for all other elements. For example,

diag(b1, b2, . . . , bq) ≡




b1 0 0 · · · 0
0 b2 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · bq


 .
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Trace of a matrix. Let A be a p × p square matrix. We then define the trace of this

matrix, denoted trace(A) (or tr(A)) as the sum of the diagonal elements of A; that is,

trace(A) =

p∑

k=1

akk.

Non-negative-definite and positive-definite matrices. Consider a p × p symmetric

and real-valued matrix, A. If, for any non-zero real-valued vector x, the scalar given by the

quadratic form x′Ax is non-negative, we say A is a non-negative-definite matrix. Similarly,

if x′Ax is strictly positive for any x 6= 0, we say that A is a positive-definite matrix.

Matrix inverse. Consider the p × p square matrix, A. If it exists, the matrix B such

that AB = BA = Ip is known as the inverse matrix of A, and it is denoted by A−1.

Thus, A−1A = AA−1 = Ip. If the inverse exists, we say that the matrix is invertible. Not

every square matrix has an inverse, but every positive-definite matrix is invertible (and, the

inverse matrix is also positive-definite).

Matrix square root. Let A be a p × p positive-definite matrix. Then there exists a

matrix B such that A = BB ≡ B2 and we say that B is the matrix square root of A

and denote it by A1/2. The matrix square root of a positive-definite matrix is also positive-

definite and we can write the inverse matrix as A−1 = A−1/2A−1/2, where A−1/2 is the

inverse of A1/2.

Spectral decomposition. Let A be a p×p symmetric matrix of real values. This matrix

can be decomposed as

A =

p∑

k=1

λkφkφ
′
k = ΦΛΦ′,

where Λ = diag(λ1, . . . , λp), Φ = [φ1, . . . ,φp], and {λk} are called the eigenvalues

that are associated with the eigenvectors, {φk}, k = 1, . . . , p, which are orthogonal (i.e.,

ΦΦ′ = Φ′Φ = Ip). Note that for a symmetric non-negative-definite matrix A, λk ≥ 0, and

for a symmetric positive-definite matrix A, λk > 0, for all k = 1, . . . , p. The matrix square

root and its inverse can be written as A1/2 = Φ diag(λ
1/2
1 , . . . , λ

1/2
p )Φ′ and A−1/2 =

Φ diag(λ
−1/2
1 , . . . , λ

−1/2
p )Φ′, respectively.

Singular value decomposition (SVD). Let A be a p × n matrix of real values. Then

the matrix A can be decomposed as A = UDV′, where U and V are p × p and n × n
orthogonal matrices, respectively. In addition, the p× n matrix D contains all zeros except

for the (k, k)th non-negative elements, {dk : k = 1, 2, . . . ,min(p, n)}, which are known

as singular values.
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B General Smoothing Kernels

Consider data {Zi : i = 1, . . . ,m}, which we can write as a vector, Z = (Z1, . . . , Zm)′.
Now, a homogeneously linear (smoothing) predictor for Z can always be written as Ẑ =
HZ, where the ith row of the m × m matrix H, sometimes referred to as the influence

matrix, corresponds to smoothing weights for the prediction, Ẑi; that is,

Ẑi =
m∑

j=1

hijZj ,

where hij corresponds to the (i, j)th element of H and, by definition, the elements of H do

not depend on Z. Note that both the kernel and regression predictors given in Section 3.1

and Section 3.2, respectively, are linear predictors of this form. In the case of the kernel

predictors, hij corresponds to the kernel evaluated at location i and j. For the regression

case, H = X(X′X)−1X′ (sometimes called the “hat” matrix in books on regression).

The difference is that, in general, under a kernel model, H gives more weight to locations

that are near to each other, whereas standard regression matrices do not necessarily do so,

although so-called local linear regression approaches do (see, for example, James et al.,

2013). There are several useful properties of the general linear smoothing matrix, H, used

in the linear predictor. First, as we have noted, if one has m observations but they are

statistically dependent, then there are effectively fewer than m degrees of freedom (e.g.,

some of the information is redundant due to the dependence). Specifically, the effective

degrees of freedom in the sample of m observations are given by the trace of the matrix H,

dfeff = tr(H) =

m∑

i=1

hii.

Another important property of linear predictors of this form is that we can obtain the

LOOCV estimate (see Technical Note 3.1) without actually having to refit the model. That

is, in the case of evaluating the MSPE, the LOOCV statistic is given by

CV(m) =
1

m

m∑

i=1

(Zi − Ẑ
(−i)
i )2 =

1

m

m∑

i=1

(
Zi − Ẑi

1− hii

)2

, (B.1)

and the so-called generalized cross-validiation statistic is given by replacing the denomina-

tor in the right-hand side of (B.1) by (1− tr(H)/m).
In cases where regularization is considered in the context of the linear predictor (e.g.,

when we wish to shrink the parameters toward zero by using, for example, a ridge regres-

sion (L2-norm) penalty; see Technical Note 3.4), we can write H = X(X′X + R)−1X′

(with R = λI in the ridge-regression case), and the effective degrees of freedom and

LOOCV properties are still valid (see James et al., 2013). As discussed in Technical Note

3.4, a lasso (L1-norm) penalty can also be used for regularization, but the smoothing kernel

has no closed form in this case.
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C Estimation and Prediction for Dynamic Spatio-Temporal

Models

Estimation and prediction for linear dynamic spatio-temporal models (DSTMs) with Gaus-

sian errors can sometimes be done using methods developed for state-space models (when

there are many more temporal observations than spatial locations). In particular, after

conditioning on parameter estimates, the hidden (state) process can be predicted using a

Kalman filter or smoother, and the parameters might be estimated using an expectation-

maximization (EM) algorithm or a Markov chain Monte Carlo (MCMC) algorithm. This

appendix illustrates, first, a method-of-moments estimation approach that is common in

vector autoregession modeling in time series, and second, a detailed description of param-

eter estimation and prediction of the process in linear DSTMs with Gaussian errors using

the Kalman filter, Kalman smoother, and the EM algorithm.

C.1 Estimation in Vector Autoregressive Spatio-Temporal Models via the

Method of Moments

In traditional vector autoregressive (VAR) time-series applications, the autoregressive pro-

cess is assumed to correspond directly to the data-generating process (i.e., there is no sep-

arate data model and process model). In the spatio-temporal context this implies a model

such as

Zt = MZt−1 + ηt, ηt ∼ Gau(0,Cη), (C.1)

for t = 1, . . . , T , where we assume that Z0 is known and recall that Zt =
(Zt(s1), . . . , Zt(sm))′. Estimation of the matrices M and Cη can be obtained via max-

imum likelihood, least squares, or the method of moments (see Lütkepohl, 2005, Chapter

3). We illustrate the latter here.

For simplicity, we assume {Zt} has mean zero and is second-order stationary in time.

If we post-multiply both sides of (C.1) by Z′
t−1 and take the expectation, we get,

E(ZtZ
′
t−1) = ME(Zt−1Z

′
t−1),

which we write as

C(1)
z = MC(0)

z . (C.2)

Recall from Chapter 2 that C
(τ)
z is the lag-τ spatial covariance matrix for {Zt}. Now, (C.2)

implies that

M = C(1)
z (C(0)

z )−1. (C.3)

Similarly, if we post-multiply (C.1) by Z′
t and take expectations, we can show that

Cη = C(0)
z −MC(1)′

z = C(0)
z −C(1)

z (C(0)
z )−1C(1)′

z . (C.4)
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It follows that the method-of-moments estimators (where empirical moments are equated

with theoretical moments) of (C.3) and (C.4) are given by

M̂ = Ĉ(1)
z (Ĉ(0)

z )−1, (C.5)

Ĉη = Ĉ(0)
z − Ĉ(1)

z (Ĉ(0)
z )−1Ĉ(1)′

z . (C.6)

In (C.6), the empirical lag-τ covariance matrices, Ĉ
(τ)
z , are calculated as shown in (2.4).

Note that T needs to be larger than the dimension of Zt to ensure that Ĉ
(0)
z is invertible.

As we have said throughout this book, we prefer to consider DSTMs that have a separate

data and process model. Estimation for these models is described below in Appendix C.2.

So, what is the benefit of the method-of-moments approach in the context of DSTMs?

In cases where the signal-to-noise ratio is high, the estimates given by (C.5) and (C.6)

can provide reasonable estimates for exploratory data analysis. We illustrate an example

using method-of-moments estimation in Lab 5.3. Specifically, assume that we project the

spatial-mean-centered data onto orthogonal basis functions, Φ: αt = Φ′(Zt− µ̂). We then

assume that the projected data come from the model, αt = Mαt−τ + ηt, and we obtain

estimates M̂ and Ĉη based on the projected data. One can then produce forecasts such

as α̂T+τ = M̂α̂T , with estimated forecast covariance matrix, Ĉα = M̂Ĉ
(0)
α M̂′ + Ĉη,

where Ĉ
(0)
α is the empirical estimate of E(αtα

′
t). To obtain a forecast for ẐT+τ , one

would have to multiply the forecast α̂T+τ by the basis-function matrix and add back the

spatial mean: ẐT+τ = µ̂ +Φα̂T+τ . The forecast covariance matrix is then approximated

by ĈZ = ΦĈαΦ
′, where we have ignored the truncation and measurement error when

projecting onto the basis functions. Although this procedure is somewhat ad hoc, it is

simple and can give a quick forecast. More importantly, the parameter estimates in this

procedure would be used as starting values in the state-space EM algorithm described in

Appendix C.2. This is demonstrated in the second portion of Lab 5.3.

For completeness, note that when one makes the assumption that the initial spatial data

vector Z0 is known, it can be shown that, conditional on Z0, maximum likelihood, least

squares, and method-of-moments estimation all give equivalent estimates, M̂ and Ĉη (see,

for example, Harvey, 1993, Section 7.4).

C.2 Prediction and Estimation in Fully Parameterized Linear DSTMs

Traditionally, from the data model,

Zt = HtYt + εt, εt ∼ Gau(0,Cǫ,t), (C.7)

and from the process model,

Yt = MYt−1 + ηt, ηt ∼ Gau(0,Cη), (C.8)

we obtain a hierarchical model (HM). Note that we have assumed here that there is no addi-

tive offset in the data model and that the process has mean zero to simplify the exposition.
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Next we can perform prediction on the hidden process via the Kalman filter and Kalman

smoother if the parameter matrices are all known. In practice these are not known, and es-

timates are sometimes used in their place, which is an empirical hierarchical model (EHM)

approach. Note that although in general M could depend on time (and hence would be

written as Mt), we consider the simpler time-invariant case here.

Sequential Prediction of the Process via Kalman Filtering and Smoothing

In Chapter 1 we discussed the notions of smoothing, filtering, and forecasting. Before we

show the filtering and smoothing distributions and algorithms, we need to define some no-

tation and terms. In particular, let wc:d ≡ {wc, . . . ,wd}, for the generic vector wt at times

t ∈ {c, c+ 1, . . . , d− 1, d}. Then we define the forecasting distribution to be the distribu-

tion of Yt given all of the observations that occur before time t, namely, [Yt|Z1:t−1]. We

also define the filtering distribution to be the distribution of Yt given all of the observations

up to and including time t, namely, [Yt|Z1:t]. Finally, we define the smoothing distribution

to be the distribution of Yt given all the observations before, including, and after time t,
namely, [Yt|Z1:T ], for 1 ≤ t ≤ T .

The forecasting distribution is of most interest when one would like to predict the pro-

cess one time step into the future; the filtering distribution is typically most useful when

one seeks to “filter out” observation error from the true process as data come along sequen-

tially (e.g., in real time); and the smoothing distribution is most useful when one retrospec-

tively wants to smooth out the observation errors for any time in the entire observation pe-

riod. Now, consider the following notation for the conditional expectations of the forecast

and filtering distributions, respectively: Yt|t−1 ≡ E[Yt|Z1:t−1] and Yt:t ≡ E[Yt|Z1:t].
Similarly, define the conditional covariance matrices for the forecast error and filtering er-

ror distributions, respectively, as: Pt|t−1 ≡ E[(Yt − Yt|t−1)(Yt − Yt|t−1)
′|Z1:t−1] and

Pt|t ≡ E[(Yt −Yt|t)(Yt −Yt|t)
′|Z1:t].

In the case of linear Gaussian data models and process models given by (C.7) and

(C.8), the forecast and filtering distributions can be found analytically by using standard

conditional expectation/variance relationships and Bayes’ Rule, respectively. In particular,

the forecast and filtering distributions are denoted, respectively, by

Yt|Z1:t−1 ∼ Gau(Yt|t−1,Pt|t−1),

and

Yt|Z1:t ∼ Gau(Yt|t,Pt|t),

and they can be found through the famous Kalman filter algorithm given in Algorithm C.1.

Thus, given the initial conditions Y0|0 ≡ µ0 and P0|0 ≡ C0 and the parameter matrices,

{Ht}Tt=1, {Cǫ,t}Tt=1, M, and Cη, one can iterate sequentially between the forecast and

filtering steps to obtain these distributions for all times t = 1, . . . , T .
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Algorithm C.1: Kalman Filter

Set initial conditions: Y0|0 = µ0 and P0|0 = C0

for t = 1 to T do

1. Forecast distribution step:

(a) Obtain Yt|t−1 = MYt−1|t−1

(b) Obtain Pt|t−1 = Cη +MPt−1|t−1M
′

2. Filtering distribution step:

(a) Obtain the Kalman gain, Kt ≡ Pt|t−1H
′
t(HtPt|t−1H

′
t +Cǫ,t)

−1

(b) Obtain Yt|t = Yt|t−1 +Kt(Zt −HtYt|t−1)

(c) Obtain Pt|t = (I−KtHt)Pt|t−1

end for

Recall that the smoothing distribution considers the distribution of the process at time t
given all of the observations regardless of whether they come before, during, or after time

t. This smoothing distribution is denoted by

Yt|Z1:T ∼ Gau(Yt|T ,Pt|T )

and, if one saves the results from the Kalman filter, this can be obtained for all t by the

Kalman smoother algorithm (also known as the Rauch–Tung–Striebel smoother) given in

Algorithm C.2.

Algorithm C.2: Kalman Smoother

Obtain {Yt|t−1,Pt|t−1}Tt=1 and {Yt|t,Pt|t}Tt=0 from the Kalman filter algorithm (Al-

gorithm C.1)

for t = T − 1 to 0 do

1. Obtain Jt ≡ Pt|t M
′ P−1

t+1|t

2. Obtain Yt|T = Yt|t + Jt(Yt+1|T −Yt+1|t)

3. Obtain Pt|T = Pt|t + Jt(Pt+1|T −Pt+1|t)J
′
t

end for
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Parameter Estimation via the EM Algorithm

The state-space approach discussed above in terms of the Kalman filter and smoother makes

the assumption that the parameter matrices in the data and process models are known. This

is unrealistic in most cases, and one must use the data to estimate these parameters; that

is, the HM being used is an EHM. One of the most popular (and effective) ways to do

this in the state-space time-series case is through the EM algorithm (recall the general EM

algorithm presented in Algorithm 4.1).

The state-space version of the EM algorithm, originally developed by Shumway and

Stoffer (1982), denotes by Z1:T the observations and the unobservable latent process, and

by Y0:T the “missing data.” Denote the parameters by Θ ≡ {µ0,C0,Cη,Cǫ,M}, where

we assume typically that the observation matrices, {Ht}, are all known. We assume that the

initial distribution is given by Y0|0 ∼ Gau(µ0,C0), and we further assume here (for sim-

plicity) that Cǫ corresponds to them×mmeasurement-error covariance matrix for all poss-

ible observation locations (thus, Cǫ,t = Cǫ, for all t, somt = m and we assume no missing

observations at each time point). The EM algorithm is then based on the complete-data like-

lihood given by [Z1:T ,Y0:T |Θ] =
(∏T

t=1[Zt|Yt]
)(∏T

t=1[Yt|Yt−1]
)
[Y0], which again

makes use of the conditional independencies in the data model and the Markov property

of the process model. The EM algorithm for a linear DSTM, presented in Algorithm C.3,

makes use of the Kalman smoother algorithm to evaluate both the E-step and the M-step.

Note that, in addition to running the Kalman smoother at each iteration of the algorithm,

we also have to obtain the so-called “lagged-one smoother” variance–covariance matrix,

Pt,t−1|T ≡ E((Yt − Yt|T )(Yt−1 − Yt−1|T )
′|Z1:T ), for t = T, T − 1, . . . . This is ac-

complished by the so-called lag-one covariance smoother, which is part of Algorithm C.3.

Convergence can be assessed by considering parameter changes and/or changes to the log

complete-data likelihood (i.e., see (C.9) in Algorithm C.3). Typically, in the linear DSTM

case, one considers the latter because there are a large number of parameters. An example

of using the EM algorithm for a linear DSTM is given in Lab 5.3.

Algorithm C.3: Linear DSTM E-M Algorithm

Choose initial condition covariance matrix, C0

Choose starting values: Θ̂
(0)

= {µ̂(0)
0 , Ĉ

(0)
η , Ĉ

(0)
ǫ , M̂(0)}

repeat i = 1, 2, . . .

1. E-step:

• Use Θ̂
(i−1)

in the Kalman smoother (Algorithm C.2) to obtain

{Y(i−1)
t|T ,P

(i−1)
t|T }

• Use Kalman smoother output to obtain the lag-one covariance smoother

estimates
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• Calculate P
(i−1)
T,T−1|T = (I−K

(i−1)
T HT )M

(i−1)P
(i−1)
T−1|T−1

• for t = T, T − 1, . . . , 2 do

P
(i−1)
t−1,t−2|T = P

(i−1)
t−1|t−1J

(i−1)′

t−2 + J
(i−1)′

t−1 (P
(i−1)
t,t−1|T

− M(i−1)P
(i−1)
t−1|t−1)J

(i−1)′

t−2

• end for

• Calculate S00 ≡
∑T

t=1(P
(i−1)
t−1|T +Y

(i−1)
t−1|TY

(i−1)′

t−1|T )

• Calculate S11 ≡
∑T

t=1(P
(i−1)
t|T +Y

(i−1)
t|T Y

(i−1)′

t|T )

• Calculate S10 ≡
∑T

t=1(P
(i−1)
t,t−1|T +Y

(i−1)
t|T Y

(i−1)′

t−1|T )

2. M-step:

• Update: µ̂
(i)
0 = Y

(i−1)
0|T

• Update: M̂(i) = S10S
−1
00

• Update: Ĉ
(i)
η = (1/T )(S11 − S10S

−1
00 S

′
10)

• Update:

Ĉ(i)
ǫ =

1

T

T∑

t=1

((Zt −HtY
(i−1)
t|T )(Zt −HtY

(i−1)
t|T )′

+ HtP
(i−1)
t|T H′

t)

until convergence (typically, based on differences in −2 ln(L(Θ|Z1:T ,Y0:T )) as cal-

culated in (C.9):

− 2 ln(L(Θ(i)|Z1:T ,Y
(i)
0:T )) = ln(|Ĉ(i)

0 |) + (Y
(i)
0|T − µ̂(i)

0 )′Ĉ
−1(i)
0 (Y

(i)
0|T − µ̂(i)

0 )

+ T ln(|Ĉ(i)
η |) +

T∑

t=1

(Y
(i)
t|T − M̂(i)Y

(i)
t−1|T )

′Ĉ−1(i)
η (Y

(i)
t|T − M̂(i)Y

(i)
t−1|T )

+ T ln(|Ĉ(i)
ǫ |) +

T∑

t=1

(Zt −HtY
(i)
t|T )

′Ĉ−1(i)
ǫ (Zt −HtY

(i)
t|T ). (C.9)

Uncertainty estimates are less easily obtained for the parameter estimates than they are

for the state-process estimates, but they can be obtained through considering the inverse of

the associated asymptotic information matrix or by parametric bootstrap methods. Unfor-
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tunately, obtaining uncertainty estimates even for the state-process estimates is not often

done in practice and, as discussed in the comments motivating DSTMs in Section 5.2.3, it

can be problematic because of the potential for explosive behavior by some of the transition

matrices whose parameters are within the joint confidence region.

More flexible inference for DSTMs can be accomplished by the fully hierarchical

Bayesian hierarchical model (BHM); see Section 4.5.2 as well as Cressie and Wikle (2011,

Chapter 8). These BHM implementations are often problem-specific, and they are often

best implemented directly in R or in a so-called probabilistic programming language (e.g.,

Stan, WinBugs, JAGS). For an example, see the Gibbs sampler MCMC algorithm (cor-

responding to a BHM) to predict Mediterranean surface winds implemented in Appendix

E.

C.3 Estimation for Non-Gaussian and Nonlinear DSTMs

In principle, the filtering and smoothing methods presented in Appendix C.2 can be gen-

eralized to the setting of non-Gaussian and nonlinear DSTMs (e.g., particle filters and

smoothers, ensemble Kalman filters; see Chapter 8 of Cressie and Wikle, 2011). However,

in the high-dimensional settings with deep BHMs with complicated parameter-dependence

structures, one typically has to consider fully Bayesian implementations. As mentioned

above, these implementations are often programmed “from scratch” rather than from par-

ticular R packages. As an example, see the BHM based on a linear DSTM with Gaussian

error given in Appendix E.

D Mechanistically Motivated Dynamic Spatio-Temporal

Models

As discussed in Section 5.3, it can be quite useful to parameterize DSTMs by considering

transition matrices that are motivated by a mechanistic model. Here, we show the details

of how one can do this with a partial differential equation (PDE) and an integro-difference

equation (IDE).

D.1 Example of a Process Model Motivated by a PDE: Finite Differences

Consider the case where the parameters a, b, u, and v in (5.14) vary with space and denote

the two-dimensional spatial location by the vector s = (x, y)′. Then the PDE is

∂Y

∂t
=

∂

∂x

(
a(x, y)

∂Y

∂x

)
+

∂

∂y

(
b(x, y)

∂Y

∂y

)
+ u(x, y)

∂Y

∂x
+ v(x, y)

∂Y

∂y
. (D.1)

If we consider this process on a regular two-dimensional grid and employ a standard cen-

tered finite difference in space and a forward difference in time for (D.1), we obtain a lagged
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nearest-neighbor relationship given by

Yt(x, y) = θp,1(x, y)Yt−∆t(x, y) + θp,2(x, y)Yt−∆t(x+∆x, y)

+ θp,3(x, y)Yt−∆t(x−∆x, y) + θp,4(x, y)Yt−∆t(x, y +∆y)

+ θp,5(x, y)Yt−∆t(x, y −∆y), (D.2)

where ∆t is a time-discretization constant, ∆x and ∆y are spatial-discretization constants,

and the θs are defined as

θp,1(x, y) =

[−2a(x, y)∆t

∆2
x

+
−2b(x, y)∆t

∆2
y

]
+ 1,

θp,2(x, y) =
a(x+∆x, y)∆t

4∆2
x

− a(x−∆x, y)∆t

4∆2
x

+
a(x, y)∆t

∆2
x

+
u(x, y)∆t

2∆x
,

θp,3(x, y) =
−a(x+∆x, y)∆t

4∆2
x

+
a(x−∆x, y)∆t

4∆2
x

+
a(x, y)∆t

∆2
x

− u(x, y)∆t

2∆x
,

θp,4(x, y) =
b(x, y +∆y)∆t

4∆2
y

− b(x, y −∆y)∆t

4∆2
y

+
b(x, y)∆t

∆2
y

+
v(x, y)∆t

2∆y
,

θp,5(x, y) =
−b(x, y +∆y)∆t

4∆2
y

+
b(x, y −∆y)∆t

4∆2
y

+
b(x, y)∆t

∆2
y

− v(x, y)∆t

2∆y
.

Thus, we see that the finite differences suggest that the neighbors of location (x, y) at the

previous time (i.e., locations (x −∆x, y), (x + ∆x, y), (x, y −∆y), and (x, y + ∆y)), as

well as the location (x, y) itself, play a role in the transition from one time to the next. Note

the role of the spatially varying parameters. Let Yt be the process evaluated at all interior

grid points at time t, and assume the process is defined to be 0 on the boundary (for ease

of presentation). Then one can write (D.2) as Yt = MYt−∆t , where M is parameterized

with the elements of {θp,i(x, y), i = 1, . . . , 5}. Assume first for simplicity that there is no

advection (i.e., u(x, y) = 0, v(x, y) = 0 for all locations) and the diffusion coefficients in

the x- and y-directions are equal (i.e., a(x, y) = b(x, y)). Then, it can be shown that the

transition operator M is still asymmetric if the diffusion coefficients vary with space. If the

diffusion coefficients are constant in space and equal (i.e., a = b), then transition-operator

asymmetry is only due to the advection component.

The type of diffusion represented in (D.1) is typically called “Fickian” diffusion. Sim-

ilar finite-difference discretizations of other diffusion representations (e.g., so-called “eco-

logical diffusion,” ∇2(a(x, y)Y )) lead to different formulations of the parameters θp (in

terms of the coefficients a(x, y)), but they still correspond to a five-diagonal sparse trans-

ition operator M. Thus, in the context of a linear DSTM process model, we typically allow

the parameters θp to be spatially explicit random processes with the possible addition of co-

variates, rather than model the specific diffusion equation coefficients (e.g., a(x, y), b(x, y),
u(x, y), and v(x, y) in (D.1)) directly. (Although, one can certainly do this, and the differ-

ent diffusions correspond to different scientific interpretations.) A last point to make is that
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different types of finite-difference discretizations lead to different parameterizations (e.g., a

higher-order spatial discretization leads to larger neighborhoods, and higher-order temporal

differences lead to higher-order Markov models.)

D.2 Example of a Process Model Motivated by a PDE: Spectral

This section considers a natural basis-function (i.e., spectral) approach to motivating a

DSTM from a mechanistic model.

Consider a simple one-dimensional spatial version of the advection–diffusion PDE in

(5.14), and denote the spatial index by x,

∂Y (x, t)

∂t
= a

∂2Y (x, t)

∂x2
− b

∂Y (x, t)

∂x
, (D.3)

where in this example the advection and diffusion coefficients (b and a, respectively) are

assumed to be constant. Now consider the solution as a superposition of Fourier functions

(i.e., sines and cosines),

Yt(x) =
J∑

j=1

[αj,t(1) cos(ωjx) + αj,t(2) sin(ωjx)], (D.4)

where ωj = 2πj/|Dx| is the spatial frequency of a sinusoid with spatial wave number

j = 1, . . . , J in the spatial domain Dx (and |Dx| corresponds to the length of the spatial

domain). For simplicity of exposition, we do not include a constant term in the expansion

(D.4). For the n spatial locations of interest and nα Fourier basis functions, we let Yt =
Φαt, where Yt is an nα-dimensional vector, Φ is an nα × nα matrix consisting of Fourier

basis functions, and αt contains the associated n expansion coefficients, where nα = 2J .

The deterministic solution of (D.3) gives formulas for αj,t(1), αj,t(2), which are expo-

nentially decaying sinusoids in time:

αj,t(1) = exp(−aω2
j t) sin(bωjt),

αj,t(2) = exp(−aω2
j t) cos(bωjt), j = 1, . . . , J.

In this case, the time evolution is given by,

αj,t+∆t = Mjαj,t, j = 1, . . . , J,

where αj,t ≡ (αj,t(1) αj,t(2))
′ and

Mj =

[
e−aω2

j∆t cos{ωj∆t} e−aω2
j∆t sin{ωj∆t}

−e−aω2
j∆t sin{ωj∆t} e−aω2

j∆t cos{ωj∆t}

]
.
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This motivates the 2J-dimensional linear DSTM process model,

αt = Mααt−1 + ηt ,

whereαt ≡ (α′
1,t . . . α

′
J,t)

′ forαj,t = (αj,t(1), aj,t(2))
′, ηt = (η′1,t, . . . ,η

′
J,t)

′ for ηj,t =
(ηj,t(1), ηj,t(2))

′, Mα is a 2J×2J block diagonal matrix with blocks {Mj , j = 1, . . . , J},

and we have assumed that ∆t = 1. This then suggests block-diagonal parameterizations

where the 2× 2 coefficients associated with each set of Fourier functions are unknown and

must be estimated (e.g., via a Bayesian hierarchical model). The result is a very sparse

representation for the transition matrix, Mα, when J is large.

D.3 Example of a Process Model Motivated by an IDE

The stochastic IDE framework discussed in Chapter 5 naturally motivates a DSTM process

model. Consider a decomposition similar to (5.24), where we let the process {Ỹt(s) : s ∈
Ds} be decomposed as

Ỹt(s) = xt(s)
′β + Yt(s) + νt(s) ,

where {Yt(s) : s ∈ Ds} is assumed to be a dynamical process, and νt(s) is a non-dynamical

process in the sense that it does not exhibit Markovian temporal dependence. Now, we

assume that {Yt(s)} follows a stochastic IDE model as in (5.9). That is, for s ∈ Ds,

Yt(s) =

∫

Ds

m(s,x;θp) Yt−1(x)dx+ ηt(s) , (D.5)

wherem(s,x;θp) is the transition kernel over the domainDs, and θp are kernel parameters.

As in (5.15), we assume that the dynamical process can be expanded in terms of nα
basis functions, {φi(s) : i = 1, . . . , nα}. That is,

Yt(s) =

nα∑

i=1

φi(s)αi,t . (D.6)

Now, we can also expand the transition kernel in terms of these basis functions (although

we could use different basis functions in general; see, for example Cressie and Wikle, 2011,

Chapter 7):

m(s,x;θp) =

nα∑

j=1

φj(x)bj(s;θp). (D.7)

Substituting (D.6) and (D.7) into (D.5) and, for the sake of simplicity, adding the assump-

tion that the basis functions are orthonormal,

∫

Ds

φi(x)φj(x)dx =

{
1, i = j,
0, i 6= j,
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we can show that

Yt(s) =

nα∑

i=1

bi(s;θp)αi,t−1 + ηt(s)

= b′(s;θp)αt−1 + ηt(s) ,

where b(s;θp) ≡ (b1(s;θp), . . . , bnα(s;θp))
′ and αt ≡ (α1,t, . . . , αnα,t)

′. Note also that

Yt = Φαt, where Φ is an n× nα basis-function matrix,

Φ ≡



φ(s1)

′

...

φ(sn)
′


 ,

and φ(si) ≡ (φ1(si), . . . , φnα(si))
′, for i = 1, . . . , n. Now, define the n× nα matrix

B ≡




b(s1;θp)
′

...

b(sn;θp)
′


 .

Then, for all n process locations, we can write

αt = (Φ′Φ)−1Φ′Bαt−1 + (Φ′Φ)−1Φ′ηt

= Φ′Bαt−1 +Φ′ηt

≡ Mααt−1 + η̃t,

where the second equality is due to orthonormality (i.e., Φ′Φ = I), η̃t ≡ Φ′ηt is the

nα-dimensional noise process, and the nα×nα propagator matrix is given by Mα ≡ Φ′B.

The truncated expansion (D.6) leads to a lower-dimensional dynamical process (since

nα ≪ n). In principle, we still have to estimate the n × nα matrix B and the covariance

matrix associated with η̃t. However, the IDE formulation allows the kernel m(s,x;θp) to

be parameterized parsimoniously. In some cases, one can select {φj(s)} to ensure that the

expansion coefficients for the kernel can be specified analytically in terms of its parameters.

For example, letting {φj(·)} in (D.7) be Fourier basis functions allows one to parameterize

the kernel in terms of its characteristic function. This can facilitate a BHM parameterization

that allows kernel asymmetry and scale parameters to vary in space.

Lab 5.1 gives an introduction to the implementation of the IDE in one-dimensional

space. Lab 5.2 then gives an implementation of a DSTM motivated by the stochastic IDE

model to generate nowcasts for weather radar images.
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E Case Study: Physical-Statistical Bayesian Hierarchical

Model for Predicting Mediterranean Surface Winds

In this section we present a specific and detailed example of how to develop a physically

motivated bivariate spatio-temporal model for the purpose of predicting near-surface wind

fields in the Mediterranean Sea. The implementation of this model in R is given below.

Consider a simple analytical model for the surface wind known as the Rayleigh friction

equations (e.g., Stevens et al., 2002):

∂u

∂t
= fv − 1

ρ0

∂P

∂x
− γu,

∂v

∂t
= −fu− 1

ρ0

∂P

∂y
− γv,

where u and v are the east–west and north–south components of the wind, respectively

(recall that winds are vectors with a magnitude and direction that can be decomposed into x
(east–west) and y (north–south) coordinates); f is the Coriolis parameter; ρ0 is a reference

atmospheric density; P is the sea-level pressure; and γ is the Rayleigh friction parameter.

Note that u, v, and P are functions of time and space. As in Section D.1, simple forward

differencing in time with ∆t = 1, and centered differencing in space, give the analogous

discretized form of these equations:

ut+1(i, j) = ut(i, j) + ∆t

{
fvt(i, j)−

1

ρ0

(
Pt(i+ 1, j)− Pt(i− 1, j)

2∆x

)
− γut(i, j)

}
,

(E.1)

vt+1(i, j) = vt(i, j) + ∆t

{
−fut(i, j)−

1

ρ0

(
Pt(i, j + 1)− Pt(i, j − 1)

2∆y

)
− γvt(i, j)

}
,

(E.2)

where ut(i, j), vt(i, j), and Pt(i, j) are discretized wind components and pressure, respec-

tively, at grid location (i, j) and time t, and ∆t, ∆x, and ∆y are the time-, x-, and y-

discretization constants, respectively. Note that this is a multivariate linear system, with

each component of the wind conditioned on the past values of that component, the other

component, and the difference (gradient) in pressure.

Now a simple statistical process model based on these equations can be written in vector

form as:

ut+1 = θuuut + θuvvt + θupDxPt + ηu,t, (E.3)

vt+1 = θvvvt + θvuut + θvpDyPt + ηv,t, (E.4)
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for t = 1, . . . , T − 1, where vt and ut are ng-dimensional (ng = nx × ny) vectors of the

discretized u and v components, nx and ny being the number of grid locations in the x-

and y-directions on the prediction grid; Pt is an ne = (nx + 2) × (ny + 2)-dimensional

vector of surface pressure values on an expanded grid (which in our example will come

from data); Dx and Dy are ng ×ne matrix operators that give the centered difference in the

x and y directions, respectively; and ηu,t ∼ iid Gau(0, σ2uI) and ηv,t ∼ iid Gau(0, σ2vI)
are residual error processes. Although we could specify the θ-values in (E.3) and (E.4)

according to the discretization constants and f and γ in (E.1) and (E.2), we instead allow

them to be unknown and random here (see below) and include the additive error terms to

adapt to the data and to reflect the fact that the Rayleigh friction equations are a pretty rough

approximation for reality. More complicated versions of this model are given in Milliff et al.

(2011) and Cressie and Wikle (2011, Chapter 9) to account for spatio-temporal dependent

errors as well as a random pressure process.

We have two sources of data on Mediterranean surface winds (as described in Section

2.1): gridded analysis wind and pressure data from the European Center for Medium Range

Weather Forecasting (ECMWF) (these observations are complete in space and time); and

higher-resolution satellite observations of near-surface winds over the ocean from the polar-

orbiting QuikSCAT scatterometer (these observations are irregular in space and time). The

BHM is given by a data model, a process model, and a parameter model. For modeling the

Mediterranean wind data, these are defined as follows.

Data model. For t = 1, . . . , T , assume

Eu,t|ut, σ
2
e ∼ indep. Gau(Heut, σ

2
eI), (E.5)

Ev,t|vt, σ
2
e ∼ indep. Gau(Hevt, σ

2
eI), (E.6)

Su,t|ut, σ
2
s ∼ indep. Gau(Hs,tut, σ

2
sI), (E.7)

Sv,t|vt, σ
2
s ∼ indep. Gau(Hs,tvt, σ

2
sI), (E.8)

where Eu,t,Ev,t are ne-vectors of ECMWF observations at time t, with associated ne ×ng
incidence matrix He; and Su,t,Sv,t are ns,t-dimensional vectors of QuikSCAT observations

at time t, with associated ns,t × ng incidence matrices, Hs,t. (Note that there are different

numbers of QuikSCAT observations at each time, and there can be times for which there

are no QuikSCAT observations.)

Process model. For t = 1, . . . , T − 1, assume

ut+1|ut,vt,Pt, θuu, θuv, θup, σ
2
u ∼ indep. Gau(θuuut + θuvvt + θupDxPt, σ

2
uI), (E.9)

vt+1|vt,ut,Pt, θvv, θvu, θvp, σ
2
v ∼ indep. Gau(θvvvt + θvuut + θvpDyPt, σ

2
vI),(E.10)

where we have pressure observations, Pt, from the ECMWF data within the Mediterranean
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wind data. We also need to specify the process’s initial conditions at time t = 1. Assume

u1|µu,1, σ
2
u,1 ∼ Gau(µu,1, σ

2
u,1I), (E.11)

v1|µv,1, σ
2
v,1 ∼ Gau(µv,1, σ

2
v,1I). (E.12)

Parameter model. All of the process-model parameters are assumed to be independent and

their distributions are given by

θab|µab, σ2ab ∼ Gau(µab, σ
2
ab), (E.13)

for ab = {uu, vv, uv, vu, up, vp}. Further,

σ2a|qa, ra ∼ IG(qa, ra), (E.14)

for a = {u, v} (where IG(qa, ra) is the inverse gamma distribution with shape parameter

qa and rate parameter ra).

Hyperparameters (fixed and specified). The following hyperparameters are speci-

fied based on scientific assumptions or to correspond to “vague” prior distributions:

σ2e , σ
2
s , {µab, σ2ab : ab = uu, vv, uv, vu, up, vp}, {qa, ra : a = u, v},µu,1,µv,1, σ

2
u,1, σ

2
v,1.

Specific values are given in the R example that follows.

Gibbs sampler. The BHM presented above is amenable to a Gibbs sampler MCMC im-

plementation because all the full conditional distributions are available in closed form (see

Cressie and Wikle, 2011, Chapter 8, for details on how to derive full conditional distribu-

tions for spatio-temporal models). Recall that from Algorithm 4.2 that the Gibbs sampler

simply cycles through the full conditional distributions, sampling each variable given the

most recent samples. The Gibbs sampler for the BHM of the Mediterranean winds data is

outlined in Algorithm E.1, where the equation numbers correspond to the full conditional

distributions presented in the next section.

Algorithm E.1 Gibbs Sampler for BHM of Mediterranean winds data set

Select hyperparameters: σ2e , σ2s , {µab, σ2ab : ab = uu, vv, uv, vu, up, vp}, {qa, ra :
a = u, v}, µu,1, µv,1, σ2u,1, σ2v,1

Select initial values: {u(0)
t : t = 2, . . . , T}, {v(0)

t : t = 1, . . . , T}, θ
(0)
uu , θ

(0)
vv , θ

(0)
uv ,

θ
(0)
vu , θ

(0)
up , θ

(0)
vp , σ

2(0)
u , σ

2(0)
v

for i = 1, 2, . . . , Ngibbs do
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1. using (E.15), sample from

u
(i)
1 |v

(i−1)
1 ,u

(i−1)
2 ,v

(i−1)
2 , θ

(i−1)
vu , θ

(i−1)
uu , θ

(i−1)
uv , θ

(i−1)
vv , θ

(i−1)
vp , θ

(i−1)
up , σ

2(i−1)
u , σ

2(i−1)
v

2. using (E.16) for t = 2, . . . , T − 1, sample from

u
(i)
t |u

(i)
t−1,u

(i−1)
t+1 ,v

(i−1)
t−1 ,v

(i−1)
t ,v

(i−1)
t+1 , θ

(i−1)
vu , θ

(i−1)
uu , θ

(i−1)
uv , θ

(i−1)
vv ,

θ
(i−1)
vp , θ

(i−1)
up , σ

2(i−1)
u , σ

2(i−1)
v

3. using (E.17), sample from

u
(i)
T |u

(i)
T−1,v

(i−1)
T−1 , θ

(i−1)
uu , θ

(i−1)
uv , θ

(i−1)
up , σ

2(i−1)
u

4. using (E.18), sample from

v
(i)
1 |u

(i)
1 ,u

(i)
2 ,v

(i−1)
2 , θ

(i−1)
uv , θ

(i−1)
uu , θ

(i−1)
vu , θ

(i−1)
vv , θ

(i−1)
up , θ

(i−1)
vp , σ

2(i−1)
u , σ

2(i−1)
v

5. using (E.19) for t = 2, . . . , T − 1, sample from

v
(i)
t |u

(i)
t ,u

(i)
t−1,u

(i)
t+1,v

(i)
t−1,v

(i−1)
t+1 , θ

(i−1)
vu , θ

(i−1)
uu , θ

(i−1)
uv , θ

(i−1)
vv , θ

(i−1)
vp , θ

(i−1)
up , σ

2(i−1)
u , σ

2(i−1)
v

6. using (E.20), sample from

v
(i)
T |u

(i)
T−1,v

(i)
T−1, θ

(i−1)
vv , θ

(i−1)
vu , θ

(i−1)
vp , σ

2(i−1)
v

7. using (E.21), sample from

θ
(i)
uu|{u

(i)
t : t = 1, . . . , T}, {v

(i)
t : t = 1, . . . , T}, θ(i−1)

uv , θ
(i−1)
up , σ

2(i−1)
u

8. using (E.22), sample from

θ
(i)
vv |{u

(i)
t : t = 1, . . . , T}, {v

(i)
t : t = 1, . . . , T}, θ(i−1)

vu , θ
(i−1)
vp , σ

2(i−1)
v

9. using (E.23), sample from

θ
(i)
uv |{u

(i)
t : t = 1, . . . , T}, {v

(i)
t : t = 1, . . . , T}, θ(i)uu, θ

(i−1)
up , σ

2(i−1)
u

10. using (E.24), sample from

θ
(i)
vu |{u

(i)
t : t = 1, . . . , T}, {v

(i)
t : t = 1, . . . , T}, θ(i)vv , θ

(i−1)
vp , σ

2(i−1)
v

11. using (E.25), sample from

θ
(i)
up |{u

(i)
t : t = 1, . . . , T}, {v

(i)
t : t = 1, . . . , T}, θ(i)uu, θ

(i)
uv , σ

2(i−1)
u

12. using (E.26), sample from

θ
(i)
vp |{u

(i)
t : t = 1, . . . , T}, {v

(i)
t : t = 1, . . . , T}, θ(i)vv , θ

(i)
vu , σ

2(i−1)
v

13. using (E.27), sample from

σ
2(i)
u |{u

(i)
t : t = 1, . . . , T}, {v

(i)
t : t = 1, . . . , T}, θ(i)uu, θ

(i)
uv , θ

(i)
up

14. using (E.28), sample from

σ
2(i)
v |{u

(i)
t : t = 1, . . . , T}, {v

(i)
t : t = 1, . . . , T}, θ(i)vv , θ

(i)
vu , θ

(i)
vp

end for
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Full conditional distributions. Readers be warned that this material is very technical! The

full conditional distributions for the Gibbs sampler presented in Algorithm E.1 are included

here for advanced readers. For more examples in the spatio-temporal context, see Cressie

and Wikle (2011, Chapter 8), and for other examples see Gelman et al. (2014). In the rep-

resentation to follow, [equation number]t corresponds to the distribution associated with

the equation number above, where the variable on the left side of the conditioning symbol

is given at time t. When referring to the parameter model, (E.13) and (E.14), the nota-

tion [equation number]ab and [equation number]a correspond to the specific parameter

distribution given by ab = {uu, vv, uv, vu, up, vp} or a = {u, v}, respectively.

• Full conditional distribution for u1:

[u1|·] ∝ [E.5]1 × [E.7]1 × [E.9]2 × [E.10]2 × [E.11]

u1|· ∼ Gau(Au,1bu,1,Au,1), (E.15)

where

Au,1 ≡
(
H′

eHe/σ
2
e +H′

s,1Hs,1/σ
2
s + θ2vu I/σ

2
v + θ2uu I/σ

2
u + I/σ2u,1

)−1
,

bu,1 ≡
(
E′

u,1He/σ
2
e + S′

u,1Hs,1/σ
2
s + (v2 − cv,1)

′θvu/σ
2
v

+(u2 − cu,1)
′θuu/σ

2
u + µ′

u,1/σ
2
u,1

)′
,

with

cu,1 ≡ θuvv1 + θupDxP1,

cv,1 ≡ θvvv1 + θvpDyP1.

• Full conditional distribution for ut, t = 2, . . . , T − 1:

[ut|·] ∝ [E.5]t × [E.7]t × [E.10]t+1 × [E.9]t+1 × [E.9]t

ut|· ∼ Gau(Au,tbu,t,Au,t), (E.16)

where

Au,t ≡
(
H′

eHe/σ
2
e +H′

s,tHs,t/σ
2
s + θ2vu I/σ

2
v + θ2uu I/σ

2
u + I/σ2u

)−1
,

bu,t ≡(E′
u,tHe/σ

2
e + S′

u,tHs,t/σ
2
s + (vt+1 − cv,t)

′θvu/σ
2
v + (ut+1 − cu,t)

′θuu/σ
2
u

+ (cu,t−1 + θuuut−1)
′/σ2u)

′,

with

cv,t ≡ θvvvt + θvpDyPt,

cu,t ≡ θuvvt + θupDxPt,

cu,t−1 ≡ θuvvt−1 + θupDxPt−1.
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• Full conditional distribution for uT :

[uT |·] ∝ [E.5]T × [E.7]T × [E.9]T

uT |· ∼ Gau(Au,Tbu,T ,Au,T ), (E.17)

where

Au,T ≡
(
H′

eHe/σ
2
e +H′

s,THs,T /σ
2
s + I/σ2u

)−1
,

bu,T ≡ (E′
u,THe/σ

2
e + S′

u,THs,T /σ
2
s + (cu,T−1 + θuuuT−1)

′/σ2u)
′,

with

cu,T−1 ≡ θuvvT−1 + θupDxPT−1.

• Full conditional distribution for v1:

[v1|·] ∝ [E.6]1 × [E.8]1 × [E.10]2 × [E.9]2 × [E.12]

v1|· ∼ Gau(Av,1bv,1,Av,1), (E.18)

where

Av,1 ≡
(
H′

eHe/σ
2
e +H′

s,1Hs,1/σ
2
s + θ2uv I/σ

2
u + θ2vv I/σ

2
v + I/σ2v,1

)−1
,

bv,1 ≡
(
E′

v,1He/σ
2
e + S′

v,1Hs,1/σ
2
s + (u2 − cu,1)

′θuv/σ
2
u

+(v2 − cv,1)
′θvv/σ

2
v + µ

′
v,1/σ

2
v,1

)′
,

with

cv,1 ≡ θvuu1 + θvpDyP1,

cu,1 ≡ θuuu1 + θupDxP1.

• Full conditional distribution for vt, t = 2, . . . , T − 1:

[vt|·] ∝ [E.6]t × [E.8]t × [E.9]t+1 × [E.10]t+1 × [E.10]t

vt|· ∼ Gau(Av,tbv,t,Av,t), (E.19)

where

Av,t ≡
(
H′

eHe/σ
2
e +H′

s,tHs,t/σ
2
s + θ2uv I/σ

2
u + θ2vv I/σ

2
v + I/σ2v

)−1
,

bv,t ≡(E′
v,tHe/σ

2
e + S′

v,tHs,t/σ
2
s + (ut+1 − cu,t)

′θuv/σ
2
u + (vt+1 − cv,t)

′θvv/σ
2
v

+ (cv,t−1 + θvvvt−1)
′/σ2v)

′,

with

cu,t ≡ θuuut + θupDxPt,

cv,t ≡ θvuut + θvpDyPt,

cv,t−1 ≡ θvuut−1 + θvpDyPt−1.
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• Full conditional distribution for vT :

[vT |·] ∝ [E.6]T × [E.8]T × [E.10]T

vT |· ∼ Gau(Av,Tbv,T ,Av,T ), (E.20)

where

Av,T ≡
(
H′

eHe/σ
2
e +H′

s,THs,T /σ
2
s + I/σ2v

)−1
,

bv,T ≡ (E′
v,THe/σ

2
e + S′

v,THs,T /σ
2
s + (cv,T−1 + θvvvT−1)

′/σ2v)
′,

with

cv,T−1 ≡ θvuuT−1 + θvpDyPT−1.

• Full conditional distribution for θuu:

[θuu|·] ∝
T−1∏

t=1

[E.9]t+1 × [E.13](uu)

θuu|· ∼ Gau(Auubuu, Auu), (E.21)

where

Auu ≡
(

T−1∑

t=1

u′
tut/σ

2
u + 1/σ2uu

)−1

,

buu ≡
T−1∑

t=1

(ut+1 − kv,t)
′ut/σ

2
u + µuu/σ

2
uu,

with

kv,t ≡ θuvvt + θupDxPt.

• Full conditional distribution for θvv:

[θvv|·] ∝
T−1∏

t=1

[E.10]t+1 × [E.13](vv)

θvv|· ∼ Gau(Avvbvv, Avv), (E.22)

where

Avv ≡
(

T−1∑

t=1

v′
tvt/σ

2
v + 1/σ2vv

)−1

,

bvv ≡
T−1∑

t=1

(vt+1 − ku,t)
′vt/σ

2
v + µvv/σ

2
vv,

with

ku,t ≡ θvuut + θvpDyPt.
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• Full conditional distribution for θuv:

[θuv|·] ∝
T−1∏

t=1

[E.9]t+1 × [E.13](uv)

θuv|· ∼ Gau(Auvbuv, Auv), (E.23)

where

Auv ≡
(

T−1∑

t=1

v′
tvt/σ

2
u + 1/σ2uv

)−1

,

buv ≡
T−1∑

t=1

(ut+1 − ku,t)
′vt/σ

2
u + µuv/σ

2
uv,

with

ku,t ≡ θuuut + θupDxPt.

• Full conditional distribution for θvu:

[θvu|·] ∝
T−1∏

t=1

[E.10]t+1 × [E.13](vu)

θvu|· ∼ Gau(Avubvu, Avu), (E.24)

where

Avu ≡
(

T−1∑

t=1

u′
tut/σ

2
v + 1/σ2vu

)−1

,

bvu ≡
T−1∑

t=1

(vt+1 − kv,t)
′ut/σ

2
v + µvu/σ

2
vu,

with

kv,t ≡ θvvvt + θvpDyPt.

• Full conditional distribution for θup:

[θup|·] ∝
T−1∏

t=1

[E.9]t+1 × [E.13](up)

θup|· ∼ Gau(Aupbup, Aup), (E.25)
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where

Aup ≡
(

T−1∑

t=1

(DxPt)
′(DxPt)/σ

2
u + 1/σ2up

)−1

,

bup ≡
T−1∑

t=1

(ut+1 − ku,t)
′DxPt/σ

2
u + µup/σ

2
up,

with

ku,t ≡ θuuut + θuvvt.

• Full conditional distribution for θvp:

[θvp|·] ∝
T−1∏

t=1

[E.10]t+1 × [E.13](vp)

θvp|· ∼ Gau(Avpbvp, Avp), (E.26)

where

Avp ≡
(

T−1∑

t=1

(DyPt)
′(DyPt)/σ

2
v + 1/σ2vp

)−1

,

bvp ≡
T−1∑

t=1

(vt+1 − kv,t)
′DyPt/σ

2
v + µvp/σ

2
vp,

with

kv,t ≡ θvvut + θvuut.

• Full conditional distribution for σ2u:

[σ2u|·] ∝
T−1∏

t=1

[E.9]t+1 × [E.14](u)

σ2u|· ∼ IG(qnew,u, rnew,u), (E.27)

where

qnew,u = qu + (T − 1)ng/2,

rnew,u =

(
1

ru
+

1

2

T−1∑

t=1

(ut+1 − ku,t)
′(ut+1 − ku,t)

)−1

,

with

ku,t ≡ θuuut + θuvvt + θupDxPt.
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• Full conditional distribution for σ2v :

[σ2v |·] ∝
T−1∏

t=1

[E.10]t+1 × [E.14](v)

σ2v |· ∼ IG(qnew,v, rnew,v), (E.28)

where

qnew,v = qv + (T − 1)ng/2,

rnew,v =

(
1

rv
+

1

2

T−1∑

t=1

(vt+1 − kv,t)
′(vt+1 − kv,t)

)−1

,

with

kv,t ≡ θvvvt + θvuut + θvpDyPt.

Implementation in R

R Preliminaries

We will need the Matrix package because the BHM Gibbs sampler uses sparse matrices,

and ggquiver and ggmap to make “quiver” plots of the wind vectors on a map of the

Mediterranean region.

library("Matrix")

library("ggmap")

library("ggquiver")

library("STRbook")

The functions needed for this case study are provided with STRbook. Two func-

tions designed to work for this specific application are Medwind_BHM_preproc and

Medwind_BHM, which we describe in more detail below. Their purpose is to show that

this realistic, complex, science-motivated spatio-temporal BHM can be analyzed in R us-

ing the dynamical approach described in Chapter 5. It is worth browsing through the

code of these functions to see how it is implemented (visit https://github.com/

andrewzm/STRbook).

Preprocessing the Data and Model Setup

The function Medwind_BHM_preproc is a preprocessor function that takes the follow-

ing as arguments:

• Edat: A list of four items
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– ECMWFxylocs: Data frame containing the (x, y) coordinates on which the

wind vectors and pressures are defined

– EUdat: Data frame containing the east–west (u) component of the ECMWF

wind vector (in units of m/s) in time-wide format

– EVdat: Data frame containing the north–south (v) component of the ECMWF

wind vector (in units of m/s) in time-wide format

– EPdat: Data frame containing the ECMWF atmospheric pressure (in pascals

(Pa)) in time-wide format.

• Sdat: A list of three items

– Sxylocs: A list of items (one per time point) containing the spatial locations

(for each time point) of the scatterometer data

– SUdat: The east–west (u) component of the QuikSCAT wind vector (in units

of m/s)

– SVdat: The north–south (v) component of the QuikSCAT wind vector (in units

of m/s)

• Predlocs: Data frame containing the (x, y) coordinates of the spatial prediction

grid.

• Inparm: Other parameters for the Gibbs sampler, discussed further below.

The data objects required for this application, Edat, Sdat, and Predlocs, can be

loaded from STRbook as follows:

data("Medwind_data")

The data here correspond to 28 time periods from 00:00 UTC on 29 January 2005 to 18:00

UTC on 04 February 2005 (every 6 hours). The ECMWF analysis winds and pressure are

on a 0.5◦ × 0.5◦ grid and the QuikSCAT scatterometer winds are polar-orbiting satellite

observations at a finer resolution (see the description in Milliff et al., 2011). There are

typically no QuikSCAT observations in the prediction domain considered here at 00:00

UTC and 12:00 UTC. The prediction grid consists of 1035 (ny = 23, nx = 45) grid

locations with a 0.5◦ spacing; this prediction grid coincides with the interior grid points of

the ECMWF domain; see Section 2.1 for more details.

The preprocessor argument Inparm is a list of several parameters. These parameters

are associated with the prediction grid, the distance to search for data near prediction-grid

locations, and hyperparameters for the parameter model (prior) distributions. In particular,

the item gspdeg is the prediction-grid spacing in degrees, and srad and erad corre-

spond to the distance (in degrees) to search for ECMWF and QuikSCAT data locations,

respectively, centered on a prediction-grid location. So srad = 0.5 would mean that
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we would identify all QuikSCAT observations within 0.25 degrees of a prediction-grid lo-

cation. The values of hx and hy correspond to the average longitudinal and latitudinal

spacing (in meters), respectively, between the prediction-grid locations. With regard to the

fixed hyperparameters in Inparm, the variables s2e and s2s are the measurement-error

variances for the ECMWF and QuikSCAT wind data (σ2e and σ2s ), respectively, as given in

the data-model equations (E.5)–(E.8). These are assumed to be known (Milliff et al., 2011).

The variables mu_pri and s2_pri corresponding to the normal-distribution-prior mean

(µab) and variance (σ2ab) for the θ parameters, given in model (E.13), are also fixed (at 0
and 106, respectively, corresponding to a vague prior for θab). IGshape and IGrate are

the prior shape (qa) and rate (ra) parameters, respectively, for an inverse gamma prior on

the process-model error variances given in (E.14); these are fixed at 1 and 1, respectively,

corresponding to a vague prior for σ2a.

## parameters to control the grid, data search, and priors

##

preprocInput = list(

gspdeg = .5,

srad = .5,

erad = .5,

hx = 2*19.42865*1000,

hy = 2*27.75*1000,

s2s = 1,

s2e = 10,

mu_pri = 0,

s2_pri = 10^6,

IGshape = 1,

IGrate = 1

)

The function Medwind_BHM_preproc takes the data and other parameters and then

builds the data-model incidence matrices (He, Hs,t) given in equations (E.5)–(E.8), and

the difference operator matrices (Dx, Dy) given in equations (E.3) and (E.4), respectively.

The returned list (denoted below as Mpre) contains the lists Mdata (data), Mgrid (grid),

Mpriors (prior hyperparameters), and Mstrt (MCMC starting values). This list is used

in the Gibbs sampler given in the next section. Recall that the Gibbs sampler is an MCMC

algorithm that produces samples from the posterior distribution of all the “unknowns” given

the data.

Mpre <- Medwind_BHM_preproc(Edat = Edat,

Sdat = Sdat,

Predlocs = Predlocs,

Inparm = preprocInput)
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Running the Gibbs Sampler

This section provides the commands necessary to implement the Gibbs sampler presented

in Algorithm E.1. We specify the parameters that control the number of Gibbs sampler

iterations (ngibbs), the number of burn-in samples (nburn), and the number of iterations

to save in memory (nreal).

GibbsInput = list(ngibbs = 10000,

nburn = 1000,

nreal = 10)

The Gibbs sampler for this problem takes the arguments GibbsInput, defined as

above, and the output of the pre-processor, Mpre.

set.seed(1) # ensure reproducibility

Mout <- Medwind_BHM(GibbsInput, Mpre)

The algorithm can take quite a long time to run in order to obtain a reasonable number

of iterations. For this Lab, the output can be loaded directly from STRbook, if desired, as

follows.

data("Medwind_Gibbs_output")

The Gibbs sampler function Medwind_BHM returns a list that includes posterior

means, posterior standard deviations, and nreal realizations for the u and v wind compo-

nents, as well as all of the iterations for the θ parameters and the process-model variances.

Specifically, in this case, the list contains the following items:

• uS: posterior mean of the u components (1035 locations × 28 time points)

• vS: posterior mean of the v components (1035 locations × 28 time points)

• uSTD: posterior standard deviation of the u components (1035 locations × 28 time

points)

• vSTD: posterior standard deviation of the v components (1035 locations × 28 time

points)

• uSreal: nreal realizations of all 1035 × 28 locations/time points for the u com-

ponents (list)

• vSreal: nreal realizations of all 1035 × 28 locations/time points for the v com-

ponents (list)

• theta_xxS (xx = uu,vv,uv,vu,up,vp): ngibbs samples for the θ para-

meters
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• s2uS,s2vS: ngibbs samples for the variance parameters.

We reiterate that both the pre-processor and the Gibbs sampler functions are specifically

designed for this BHM fitted to the Mediterranean winds data. They would need substantial

modification for different BHMs fitted to different data sets using different space-time grids.

Advanced readers could examine and modify the code contained in the STRbook package

for their applications.

Examining the Model Output

It is customary to plot the Gibbs sampler output against iteration number of the Gibbs

sampler, to provide visual evidence that the samples have reasonably converged. More

formal diagnostics for MCMC convergence can be found in the coda package. In Figure

E.1, we plot the post burn-in samples for θup and σ2u as a demonstration of the code and the

graphics.

indx <- (GibbsInput$nburn+1):GibbsInput$ngibbs #plot post "burn-in"

p1 <- ggplot(data.frame(indx = indx,

theta_up = Mout$theta_upS[indx]),

aes(x = indx,y = theta_up)) + geom_line() +

ylab(expression(theta[up])) + theme_bw()

p2 <- ggplot(data.frame(indx = indx, s2u = Mout$s2uS[indx]),

aes(x = indx,y = s2u)) + geom_line() +

ylab(expression(sigma[vu]^2)) + theme_bw()

For inference on the model’s parameters, we are usually interested in their marginal

posterior distributions. In the top-left panel of Figure E.2, we plot the posterior distribution

for θup and give the code below; coding for the other parameters in the process-model

equations (E.3) and (E.4) proceeds in a similar fashion.

p1 <- ggplot(data.frame(theta_up = Mout$theta_upS[indx]),

aes(x = theta_up)) + geom_density() +

geom_vline(aes(xintercept = mean(theta_up)),

color = "red", linetype = "dashed", size = 1) +

xlab(expression(theta[up])) + theme_bw()

Finally, the main goal in this case study was to fuse the ECMWF and QuikSCAT wind

observations to generate a posterior probability distribution on wind speeds. In Figure E.3,

we plot the posterior mean and a posterior realization quiver plot for the winds for 06:00

UTC on 01 February 2005, using the following code.
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Figure E.1: Post burn-in trace plots for MCMC samples from the posterior distribution,

plotted against iteration number indx. Top: MCMC samples for θup. Bottom: MCMC

samples for σ2vu.

## Extract mean

u14 <- Mout$uS[, 14] #time 14 is Feb 1, 2005 06 UTC

v14 <- Mout$vS[, 14]

## Extract realization

u14r <- Mout$uSreal[[5]][, 14] #consider the 5th realization

v14r <- Mout$vSreal[[5]][, 14]

## Get map using get_map

lat <- c(34, 45)

long <- c(-6, 16)

bbox <- make_bbox(long, lat, f = 0.05)

bb2 <- get_map(bbox, maptype = "watercolor", source = "stamen")

## Create grid on which to plot

xg <- Mpre$Mgrid$Mgridxylocs[, 1]

yg <- Mpre$Mgrid$Mgridxylocs[, 2]

c2 <- expand.grid(x = seq(long[1], long[2], 0.5),

y = seq(lat[1], lat[2], 0.5))

## Plot the posterior mean and realization
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Figure E.2: The marginal posterior distributions (after applying a kernel smoother to the

MCMC samples) for the process-model parameters. The red dashed line shows the posterior

mean for each distribution.

p1 <- ggmap(bb2) + geom_quiver(data = c2,

aes(x = xg, y = yg, u = u14, v = v14),

vecsize = 1.5)

p2 <- ggmap(bb2) + geom_quiver(data = c2,

aes(x = xg, y = yg, u = u14r, v = v14r),

vecsize = 1.5)
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Figure E.3: Quiver plots derived from the posterior distribution of winds for 06:00 UTC on

01 February 2005. Top: Posterior mean. Bottom: A single realization from the posterior

distribution.
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F Case Study: Quadratic Echo State Networks for Sea Surface

Temperature Long-Lead Prediction

Recall from Section 5.4 that recurrent neural networks (RNNs) were developed in the en-

gineering and machine-learning literature to accommodate time-dependent cycles and se-

quences as well as the concept of “memory” in a neural network. But, like the statistical

GQN (also discussed in Section 5.4), RNNs have an extremely high-dimensional parameter

space and can be difficult to fit. In contrast, the echo state network (ESN) is a type of RNN

that considers sparsely connected hidden layers that allow for sequential interactions, yet

specifies (remarkably) most of the parameters (“weights”) to be randomly generated and

then fixed, with only the parameters that connect the hidden layer to the response being

estimated (see the overview in Jaeger, 2007). We consider a modification of the ESN in

this case study. Note that although the models presented here are relatively simple to im-

plement, the notational burden and (especially) the machine-learning jargon can take some

getting used to.

A simple representation of an ESN is given by the following hierarchical model for data

vector Zt (assumed to be m-dimensional here):

Zt = go(Vht), (F.1)

ht = gh(Wht−1 +Uxt). (F.2)

In data model (F.1) and process model (F.2), ht is an n-dimensional vector of latent (“hid-

den”) states, xt is a p-dimensional input vector, V is an m × n output-parameter weight

matrix, W is an n × n hidden-process-evolution-parameter weight matrix, U is an n × p
input-parameter weight matrix, and go(·) and gh(·) are so-called “activation functions”

(e.g., identity, softmax, hyperbolic tangent). The hidden-state model (F.2) is sometimes

called a “reservoir.” This reservoir is key to this modeling framework in that the parameter

weight matrices in (F.2), W and U, are sparse (only 1–10% of the parameters are non-zero)

with non-zero elements chosen at random and fixed (for details, see the example that fol-

lows). This means that only the output weights (in V) are estimated, substantially reducing

the estimation burden. In most applications, go(·) is the identity function, and V can be es-

timated with regression methods that include regularization, such as a ridge regression or a

lasso penalty (see Section 3.4). These models work surprisingly well for forecasting central

tendency and classification, but they are limited for inference and uncertainty quantification.

Notice that there are no error terms in this model!

McDermott and Wikle (2017) modified the basic ESN algorithm for use with spatio-

temporal data to include quadratic nonlinear outputs, so-called “embedding inputs” (see

below), and reservoir parameter uncertainty by considering an ensemble (bootstrap) sample
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of forecasts. Their quadratic echo state network (QESN), for t = 1, . . . , T , is given by:

response: Yt = V1ht +V2h
2
t + ǫt, for ǫt ∼ Gau(0, σ2ǫ I); (F.3)

hidden state: ht = gh

(
ν

|λw|
Wht−1 +Ux̃t

)
; (F.4)

parameters: W = [wi,ℓ]i,ℓ : wi,ℓ = γwi,ℓ Unif(−aw, aw) + (1− γwi,ℓ) δ0, (F.5)

U = [ui,j ]i,j : ui,j = γui,j Unif(−au, au) + (1− γui,j) δ0, (F.6)

γwi,ℓ ∼ Bern(πw), (F.7)

γui,j ∼ Bern(πu), (F.8)

where Yt is the ny-dimensional response vector at time t; ht is the nh-dimensional hidden-

state vector;

x̃t = [x′
t,x

′
t−τ∗,x

′
t−2τ∗, . . . ,x

′
t−mτ∗]

′ (F.9)

is the nx̃ = (m + 1)nx-dimensional “embedding input” vector, containing lagged values

(embeddings) of the inputs {xt} for time periods t− τ∗ through t−mτ∗, where the quan-

tity τ∗ is the embedding lag (a positive integer, often set equal to the forecast lead time);

and Bern(·) denotes the Bernoulli distribution. As in the basic ESN above, W is the n×n
hidden-process-evolution weight matrix, U is the n × p input weight matrix, and V1, V2

are the n × nh linear and quadratic output weight matrices, respectively. Furthermore, δ0
is a Kronecker delta function at zero, λw corresponds to the largest eigenvalue of W (i.e.,

the “spectral radius” of W), and ν is a spectral-radius control parameter. The “activation

function” gh(·) (a hyperbolic tangent function in our application below) controls the non-

linearity of the hidden-state evolution. The only parameters that are estimated in this model

are V 1, V2, and σ2ǫ from (F.3), for which we require a ridge-regression penalty parameter,

rv (see Technical Note 3.4). Importantly, note that the matrices W and U are simulated

from mixture distributions of small values (uniformly sampled in the range (−aw, aw) and

(−au, au), respectively) with, respectively, (1−πw) and (1−πu) elements set equal to zero

on average. After being sampled, these parameters are assumed to be fixed and known. Typ-

ically, these weight matrices are very sparse (e.g., of the order of 1–10% non-zeros). The

hyperparameters, {ν, nh, rv, πw, πu, aw, au}, are usually chosen by cross-validation.

As is the case in most traditional ESN applications, the QESN model does not have an

explicit mechanism to quantify uncertainty in the process or in the parameters. This is a

bit troubling given that the reservoir weight matrices W and U are not estimated, but are

chosen at random. We would expect that the model is likely to behave differently with a

different set of weight matrices. This is especially true when the number of hidden units

is fairly small. Although traditional ESN models typically have a very large number of

hidden units, which tends to give more stable predictions, it can be desirable to have many

different forecasts using a smaller number of hidden units. This provides flexibility in that

it prevents overfitting, allows the various forecasts to behave as a “committee of relatively

weak learners,” and gives a more realistic sense of the prediction uncertainty for out-of-

sample forecasts. Thus, we could generate an ensemble or bootstrap sample of forecasts.
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As shown in McDermott and Wikle (2017), this ensemble approach can be implemented

straightforwardly with the QESN model using Algorithm F.1.

Algorithm F.1: Ensemble QESN Algorithm

Initialize: Select tuning parameters {ν, nh, rv, πw, πu, aw, au} (e.g., by cross-

validation with a standalone QESN)

for k = 1 to K do

1. Simulate W(k), U(k) using (F.5) and (F.6) and initialize h
(k)
1

2. Calculate {h(k)
t : t = 1, . . . , T} using (F.4)

3. Use ridge regression to estimate V
(k)
1 , V

(k)
2 , and σ2ǫ

4. Calculate out-of-sample forecasts {Ŷ(k)
t : t = T + 1, . . . , T + τ}, where τ is

the forecast lead time (requires calculating {ĥ(k)
t : t = T + 1, . . . , T + τ} from

(F.4))

end for

Use ensemble of forecasts {Ŷ(k)
t : t = T + 1, . . . , T + τ ; k = 1, . . . ,K} to calculate

moments, prediction intervals, etc.

Implementation in R

In what follows, we provide a demonstration of the ensemble QESN model applied to long-

lead forecasting of sea-surface temperature using the SST data set.

Ensemble QESN Model Data Preparation

To prepare the data, we need ggplot2, dplyr, STRbook,and tidyr.

library("ggplot2")

library("dplyr")

library("STRbook")

library("tidyr")

The functions needed for this case study are provided with STRbook. Our purpose here

is to show that this nonlinear DSTM can be implemented in R fairly easily. If readers

are interested in adapting these functions to their own applications, it is worth browsing

through the functions to see how the code is implemented (visit https://github.

com/andrewzm/STRbook).
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We first load the SST data set. This time we shall use the data up to October 1996 as

training data and perform out-of-sample six-month forecasts from April 1997 to July 1999.

data("SSTlandmask")

data("SSTlonlat")

data("SSTdata")

delete_rows <- which(SSTlandmask == 1) # find land values

SSTdataA <- SSTdata[-delete_rows, ] # remove land values

In this application, we shall evaluate the forecast in terms of the time series correspond-

ing to the average of the SST anomalies in the so-called Niño 3.4 region (defined to be the

region of the tropical Pacific Ocean contained by 5◦S–5◦N, 170◦W–120◦W).

## find grid locations corresponding to Nino 3.4 region;

## note, 190 - 240 deg E longitude corresponds

## to 170 - 120 deg W longitude

nino34Index <- which(SSTlonlat[,2] <= 5 & SSTlonlat[, 2] >= -5 &

SSTlonlat[,1] >= 190 & SSTlonlat[, 1] <= 240)

The object SSTdataA is a 2261 × 399 matrix in time-wide format. In the code below,

we save the number of spatial locations in the variable nspatial. Of the 399 time points,

we only need 322 for training, the number of months between (and including) January 1970

and October 1996. We define a six-month-ahead forecast by specifying tau = 6.

nspatial <- nrow(SSTdataA) # number of spat. locations

TrainLen <- 322 # no. of months to Oct 1996

tau <- 6 # forecast lead time (months)

We train the ESN on time series associated with the first ten EOFs extracted from the

SST (training) data. The following code follows closely what was done in Labs 2.3 and 5.3.

n <- 10 # number of EOFs to retain

Z <- t(SSTdataA[, 1:TrainLen]) # data matrix

spat_mean <- apply(SSTdataA, 1, mean) # spatial mean

Zspat_detrend <- Z - outer(rep(1, TrainLen), # detrend data

spat_mean)

Zt <- 1/sqrt(TrainLen - 1)*Zspat_detrend # normalize

E <- svd(Zt) # SVD

PHI <- E$v[, 1:n] # 10 EOF spatial basis functions

TS <- t(SSTdataA) %*% PHI # project data onto basis functions

# for PC time series

Now we need to create the training and validation data sets. Both data sets will need

input data and output data. Since we are setting up the ESN for six-months-ahead fore-

casting, as input we use the PC time series (see Section 2.4.3) lagged by six months with
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respect to the output. For example, the PC time-series values at January 1970 are inputs

(xt) to forecast the SST (output) in July 1970. For prediction, we consider forecasting at

ten three-month intervals starting from October 1996 (we chose three-month intervals to

improve the visualization, but one can forecast each month if desired).

## training set

xTrainIndex <- 1:(TrainLen - tau) # training period ind. for input

yTrainIndex <- (tau+1):(TrainLen) # shifted period ind. for output

xTrain <- TS[xTrainIndex, ] # training input time series

yTrain <- TS[yTrainIndex, ] # training output time series

## test set: forecast every three months

xTestIndex <- seq(TrainLen, by = 3, length.out = 10)

yTestIndex <- xTestIndex+tau # test output indices

xTest <- TS[xTestIndex,] # test input data

yTest <- TS[yTestIndex,] # test output data

testLen <- nrow(xTest) # number of test cases

Ensemble QESN Model Implementation

We first have to make some model choices and set some parameters to run the ensemble

QESN model. For model details and terminology, see the description above.

quadInd <- TRUE # include both quadratic and linear output terms

# if FALSE, then include only linear terms

ensembleLen <- 500 # number of ensemble members (i.e., QESN runs)

The next set of parameters can be trained by cross-validation or out-of-sample valida-

tion (see McDermott and Wikle, 2017). For simplicity, we use the values obtained in that

paper (which considered a similar long-lead SST forecasting application) here. The model

arguments required as input are: wWidth, which corresponds to the parameter aw that

specifies the range of the uniform distribution for the W weight matrix parameters in (F.5);

similarly, uWidth, which corresponds to the parameter au that specifies the range of the

uniform distribution for the U matrix in (F.6); piW, which corresponds to πw in (F.7), the

probability of a non-zero W weight; piU, which corresponds to πu, the probability of non-

zero U weight parameter in (F.8); curNh, which corresponds to nh, the number of hidden

units; curNu, which corresponds to ν, the spectral radius of the W matrix; curM,which

corresponds tom, the number of lags (embeddings) of input vectors to use; tauEMB, which

corresponds to the embedding lag (τ∗ in (F.9)); and curRV, which corresponds to rv, the

ridge-regression parameter associated with the estimation of the output matrices, V1 and

V2 in (F.3).
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wWidth <- .10 # W-weight matrix, uniform dist "width" param.

uWidth <- .10 # U-weight matrix, uniform dist "width" param.

piW <- .10 # sparseness parameter for W-weight matrix

piU <- .10 # sparseness parameter for U-weight matrix

curNh <- 120 # number of hidden units

curNu <- .35 # scaling parameter for W-weight matrix

curM <- 4 # number of embeddings

tauEMB <- 6 # embedding lag

curRV <- .01 # output ridge regression parameter

Now we use the function createEmbedRNNData to create a data object containing

responses and embedding matrix inputs (see equation (F.9)) for the training and prediction

data sets (note that the responses and inputs are scaled by their respective standard devia-

tions, as is common in the ESN literature). The function takes as inputs variables defined

above: curM, the number of embedding lags; tauEMB, the embedding lag; tau, the fore-

cast lead time; yTrain, the training output time series; TS, the input time series associated

with the projection of the data onto the EOFs; and xTestIndex, which identifies the in-

dices for the input data corresponding to the test periods.

## standardize and create embedding matrices

DataObj <- createEmbedRNNData(curM, tauEMB, tau, yTrain, TS,

xTestIndex)

The returned object, DataObj, is a list containing inputs and training data in the format

required to train the ESN. We now need to create a parameter object that contains the

parameters to be used in constructing the ESN. The function we use initializes the vectors

associated with: the embedding matrix x̃t in (F.9); the hidden state ht in (F.4); and the

ridge-regression matrix, rvI (as defined in Technical Note 3.4).

setParObj <- setParsEESN(curRV ,curNh, n, curM, quadInd)

We save the forecasts in a three-dimensional array, with the first dimension indexing the

ensemble number, the second dimension indexing the forecast time point, and the third

dimension indexing the EOF number. We also create a second three-dimensional array

with the first two dimensions the same, and the third dimension indexing spatial location.

fmatESNFin <- array(NA, c(ensembleLen, testLen, n))

fmatESNFinFull <- array(NA,c(ensembleLen, testLen, nspatial))

We are now ready to run the ensemble of QESN models to obtain forecasts. For each

ensemble, we run the function genResR, which takes arguments defined previously as

input: curNh, the number of hidden units; wWidth and uWidth, the uniform distribution

sampling range for W and U, respectively; piW and piU, the probabilities of non-zeros
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in W and U, respectively; curNu, the spectral-radius parameter; quadInd, the indicator

on whether to include the quadratic output weights or not; DataObj, the embedding input

matrices; setParObj, the initializations corresponding to the hidden state vectors and the

ridge-regression matrices; and testLen, the number of test cases.

for(iEnsem in 1:ensembleLen) {

## Run the QESN model for a single ensemble

QESNOutObj = genResR(nh = curNh,

wWidth = wWidth,

uWidth = uWidth,

piW = piW,

piU = piU,

nuESN = curNu,

quadInd = quadInd,

DataObj = DataObj,

setParObj = setParObj,

testLen = testLen)

## save forecasts for the reduced dimension output

fmatESNFin[iEnsem, , ] <- t(QESNOutObj$unScaledForecasts)

## forecasts for the full spatial field

fmatESNFinFull[iEnsem, , ] <- fmatESNFin[iEnsem, , ] %*% t(PHI)

}

Post-Processing the Ensemble QESN Output

In this section we focus on post-processing the ensemble QESN output for the Niño 3.4

region. To assess whether or not we have the correct coverage of the prediction intervals,

we consider 95% (pointwise) prediction intervals.

alpha <- .05 # alpha-level of 1-alpha pred. intervals (P.I.s)

lwPI <- alpha/2

In the following code, we calculate the mean and the lower/upper boundaries of the

95% prediction interval for the Niño 3.4 region (across the whole ensemble of realizations

from the predictive distribution).

nino34AvgPreds <- nino34LwPI <- nino34UpPI <- rep(NA, testLen)

for(i in 1:testLen){

nino34AvgPreds[i] <- fmatESNFinFull[,i,nino34Index] %>%

mean()

nino34LwPI[i] <- fmatESNFinFull[, i, nino34Index] %>%

rowMeans() %>%
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quantile(lwPI)

nino34UpPI[i] <- fmatESNFinFull[,i,nino34Index] %>%

rowMeans() %>%

quantile(1 - lwPI)

}

nino34_results <- data.frame(AvgPres = nino34AvgPreds,

LwPI = nino34LwPI,

UpPI = nino34UpPI)

These predictive-distribution summaries can be compared to the average SST at the predic-

tion month, which we calculate as follows:

nino34_results$AvgObs <- SSTdata[nino34Index, yTestIndex] %>%

colMeans()

Finally, we allocate the prediction-month labels to the data frame which, for this ex-

ample, is achieved as follows.

nino34_results$date <- seq(as.Date("1997-04-01"),

length.out = 10, by = "3 months")

Plotting Results for Forecasts in the Niño 3.4 Region

In this last section, we focus our plots on the results for spatially averaged SST anomalies

over the Niño 3.4 region for every third month (to make the plot less cluttered). Although

we skip months and present the spatial average for ease of visualization, we note that the

full spatial fields could easily be plotted for any of the forecast months, as shown in Lab

5.3. In Figure F.1, we plot the prediction and prediction intervals for the spatial average

alongside the spatial average of the observations by month. The following code produces

this figure.

gresults <- ggplot(nino34_results) +

geom_line(aes(x = date, y = AvgObs)) +

geom_ribbon(aes(x = date, ymin = LwPI, ymax = UpPI),

alpha = 0.1, fill = "black") +

geom_line(aes(x = date, y = AvgPres), col = "red") +

ylab(expression(paste("Ni", tilde(n), "o 3.4 Index"))) +

xlab("Month") + theme_bw()

Although pointwise predition intervals are informative, it can also be helpful to plot

the trajectories of individual forecasts from the QESN model. This can be done by first

assigning a number (say, the first 15) of ensemble trajectories to the data frame and then

putting the data frame into long format using gather. The following code produces Figure

F.2.
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Figure F.1: Out-of-sample six-month forecasts of SST anomalies averaged over the Niño

3.4 region from April 1997 to July 1999 (every three months). The black line shows the truth

and the red line shows the average of the ensemble of QESN forecasts. The point-wise 95%

prediction intervals from the ensemble of QESN forecasts is shown with light-gray shading.

## Compute the spatial average over Nino3.4 for each ensemble

for(i in 1:15)

nino34_results[paste0("Sim",i)] <-

rowMeans(fmatESNFinFull[i,,nino34Index])

## Convert to long data frame

nino34_results_long <- nino34_results %>%

dplyr::select(-AvgPres, -LwPI,

-UpPI, -AvgObs) %>%

gather(SimNum, SSTindex, -date)

## Plot

gresults2 <- ggplot(nino34_results_long) +

geom_line(data = nino34_results, aes(x = date, y = AvgObs)) +

geom_line(aes(x = date, y = SSTindex, group = SimNum,

linetype = SimNum, colour = SimNum)) +

ylab(expression(paste("Ni", tilde(n), "o 3.4 Index"))) +

xlab("Month") + theme_bw() + theme(legend.position="none")
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Figure F.2: Out-of-sample six-month forecasts of SST anomalies averaged over the Niño

3.4 region from April 1997 through July 1999 (every three months). The black line shows

the truth, and other lines show the first 15 ensemble members from the ensemble of QESN

model forecasts.

Wikle, C. K., Zammit-Mangion, A., and Cressie, N. (2019), Spatio-Temporal Statistics with R, Boca Raton,

FL: Chapman & Hall/CRC. © 2019 Wikle, Zammit-Mangion, Cressie. https://spacetimewithr.org



Wikle, C. K., Zammit-Mangion, A., and Cressie, N. (2019), Spatio-Temporal Statistics with R, Boca Raton,

FL: Chapman & Hall/CRC. © 2019 Wikle, Zammit-Mangion, Cressie. https://spacetimewithr.org



List of R packages

This book would of course not have been possible without the free availability of R (R Core

Team, 2018) and some excellent packages. The book itself was compiled using knitr v1.20

(Xie, 2015) while running R v3.4.4. All other R packages that were at some point used

throughout the book, together with a brief description of how they were used, are listed

below.

Package Reference How used

animation v2.5 Xie (2013) spatio-temporal visualizations

ape v5.1 Paradis et al.

(2004)

Moran’s I tests in space and space-time us-

ing Moran.I

broom v0.5.0 Robinson and

Hayes (2018)

casting the summary outputs of tests into

data frames using tidy

CCA v1.2 González and

Déjean (2012)

canonical correlation analysis of spatio-

temporal data using cancor

devtools v1.13.6 Wickham and

Chang (2017)

installing STRbook

dplyr v0.7.6 Wickham et al.

(2017)

data-wrangling spatio-temporal data – in

particular filtering, sorting, selecting vari-

ables and creating new variables

EFDR v0.1.1 Zammit-Mangion

and Huang (2015)

carrying out field significance tests with

EFDR

expm v0.999-2 Goulet et al.

(2017)

raising matrices to a power using %ˆ%

fields v9.6 Nychka et al.

(2015)

computing distances using rdist and plot-

ting using image.show

FRK v0.2.2 Zammit-Mangion

(2018a)

modeling spatio-temporal data with spatio-

temporal basis functions

ggplot2 v3.0.0 Wickham (2016) visualizing data by plotting facets of line,

contour, or raster plots

ggmap v2.6.1 Kahle and

Wickham (2013)

plotting of regional maps
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ggquiver v0.1.0 O’Hara-Wild

(2017)

visualizing directional data with quivers

gridExtra v2.3 Auguie (2016) arranging ggplot2 plots into a grid using

grid.arrange or arrangeGrob

gstat v1.1-6 Gräler et al.

(2016)

inverse distance weighting, fitting spatio-

temporal semivariograms, and spatio-

temporal kriging

IDE v0.2.0 Zammit-Mangion

(2018b)

modeling spatio-temporal data with integro-

difference-equation models

INLA v18.07.12 Lindgren and Rue

(2015)

modeling non-Gaussian spatio-temporal

data with a separable model

lattice v0.20-35 Sarkar (2008) surface plots using wireframe

leaps v3.0 Lumley (2017) stepwise regression using regsubsets

lmtest v0.9-36 Zeileis and

Hothorn (2002)

Durbin–Watson tests using dwtest

maps v3.3.0 Becker and Wilks

(2017)

reading in state boundaries for plotting us-

ing map_data

maptools v0.9-3 Bivand and

Lewin-Koh

(2017).

reading in data from shapefiles using

readShapePoly

Matrix v1.2-14 Bates and

Maechler (2017)

handling objects of class Matrix

mgcv v1.8-23 Wood (2017) modeling non-Gaussian spatio-temporal

data using generalized additive models

using gamm

nlme v3.1-131 Pinheiro et al.

(2017)

fitting linear models with correlated error

using gls

plyr v1.8.4 Wickham (2011) filling in missing columns during row bind-

ing using rbind.fill

purrr v0.2.5 Henry and

Wickham (2017)

carrying out tests on groups of data using

map

RColorBrewer

v1.1-2

Neuwirth (2014) generating a color palette using

brewer.pal

scoringRules

v0.9.5

Jordan et al.

(2017a)

multivariate probabilistic validation using

es_sample and vs_sample

sp v1.3-1 Bivand et al.

(2013)

creating and handling spatial ob-

jects such as SpatialPoints or

SpatialPolygons

spacetime v1.2-2 Pebesma (2012) creating and handling spatio-temporal ob-

jects such as STIDF or STFDF
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SpatialVx v0.6-3 Gilleland (2018) field-matching methods for assessing pre-

dictions

SpatioTemporal

v1.1.7

Lindstrom et al.

(2013)

modeling spatio-temporal data with tem-

poral basis functions

SpecsVerification

v0.5-2

Siegert (2017) plotting verification rank histograms

stargazer v5.2.2 Hlavac (2015) generating LATEX tables from the results of

standard tests

STRbook v0.1.0 Zammit-Mangion

(2018c)

companion package for this book,

containing several data sets and

helper functions. Needs to be

installed using devtools through

install_github("andrewzm/STRbook")

tidyr v0.8.1 Wickham and

Henry (2017)

data-wrangling spatio-temporal data – in

particular, going from space-wide or time-

wide to long formats, and nesting and

unnesting data frames

verification v1.42 NCAR –

Research

Applications

Laboratory

(2015)

probabilistic validation using the continu-

ous ranked probability score with the func-

tion crps

xtable v1.8-2 Dahl (2016) generating LATEX tables from data frames
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189

length, 110, 197, 230, 289, 290, 298, 302

lines, 121, 194, 248

lm, 69, 114, 116, 117, 128

local_basis, 178, 292

log, 64, 192, 302

loglik, 301

loglikeSTnames, 185, 186

LOOCV_score, 110, 111

map, 122, 123, 128, 130

map_data, 62
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matrix, 178, 186, 233, 248, 292, 299

max, 133, 191, 203

mean, 55, 65, 68, 69, 110, 123, 294, 296

median, 56

min, 111, 112, 133, 191, 203

Moran.I, 119, 120, 135

mutate, 55, 74, 117, 123, 128–130, 133, 293

names, 53, 126

nb, 191

ncol, 73, 114, 124, 131, 133, 245

negloglik, 301

nest, 122, 128

nrow, 54, 70, 74, 117, 123, 186, 197, 198,

231, 245

options, 75

outer, 65, 73, 230, 231, 245

over, 293

par, 111, 121, 248

paste, 58, 59, 127

paste0, 73, 114, 124, 126, 131, 133

pchisq, 132

PCV, 297

plane, 178, 239, 291

plot, 63, 67, 111, 121, 173, 176, 177, 181,

182, 194, 201, 248

plot_cov_strips, 71

pmax, 192, 243

pmin, 127, 192, 243

poisson, 131

predict, 124, 129, 133, 180, 186, 191, 237,

242, 291, 293, 298

print, 75, 119, 185, 235, 239, 242

proj4string, 60, 174

range, 65, 70

rbind, 55, 232, 234, 294, 296

rbind.fill, 243

rdist, 108, 109

read.table, 53

real_line, 178, 292

regsubsets, 116

rename, 181

rep, 73, 178, 198, 245, 292, 299

residuals, 69, 118, 133

rev, 175

rnorm, 117, 231, 232, 234, 299

row.names, 183, 184

rownames, 186

rowSums, 108, 109

sample, 64, 233, 290

saveHTML, 67

scale, 188

scale_x_continuous, 75

scale_y_reverse, 66, 232, 234

SCV, 297

select, 56, 57, 59, 61, 63, 70, 108, 109, 114–

117, 119, 120, 123, 126, 127, 129,

131, 135, 181, 189, 293

seq, 65, 70, 75, 107, 111, 124, 133, 135, 174,

178, 186, 191, 203, 230, 292

seq_along, 111, 119, 135

set.seed, 61, 68, 117, 230, 290

setdiff, 290

show_kernel, 236, 239–241

simIDE, 235, 239

solve, 246

sort, 290

SpatialPoints, 59, 113, 131, 135, 174, 176

spread, 57, 70

sqrt, 73–75, 175, 179, 245, 247, 292, 293

stConstruct, 58

step, 116

STF, 174

STFDF, 60

STIDF, 59, 135

STplane, 176, 177, 292

stplot, 175

subset, 62, 174, 176, 298

sum, 56, 110
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summarise, 55, 56, 65, 68, 69, 294, 297

summary, 108, 115, 116, 118, 135, 237, 242,

245

svd, 73, 245

system.file, 53

te, 190

TensorP, 178, 292

theme, 64

tidy, 122

time, 289

Tmax_t, 67

transmute, 181

unique, 60, 64, 181, 188, 194, 197

unit, 64

unlist, 236, 242, 291

unnest, 123, 128, 130

updateTrend, 182, 189

variogram, 72, 124, 135, 172

vcov, 118

vgm, 173

vgmST, 173

vignette, 172

vs_sample, 301

which, 72, 233, 245, 247, 290

which.min, 111, 112

with, 58, 59, 291

Wt_fun, 110

Wt_Gauss, 109

Wt_IDW, 108

Pages refer to the end of the code chunk containing the function. The function may hence appear

on the page preceding that listed when the code chunk spans more than one page.

Wikle, C. K., Zammit-Mangion, A., and Cressie, N. (2019), Spatio-Temporal Statistics with R, Boca Raton,

FL: Chapman & Hall/CRC. © 2019 Wikle, Zammit-Mangion, Cressie. https://spacetimewithr.org


